CQ重庆	万日	E		30V N-	CQ3400A Channel MOSFET
General Description			Product Summ	ary	
The CQ3400A combines advance technology with a low resistance p extremely low R _{DS(ON)} . This devic load switch or in PWM application	ed trench MOS backage to pr e is suitable f is.	SFET ovide or use as a	$\label{eq:VDS} \begin{split} V_{DS} & \\ I_D \ (at \ V_{GS} = 10 V) \\ R_{DS(ON)} \ (at \ V_{GS} = 10 V) \\ R_{DS(ON)} \ (at \ V_{GS} = 4.) \\ R_{DS(ON)} \ (at \ V_{GS} = 2.) \end{split}$	/) 5V) 5V)	30V 5.7A < 26.5mΩ < 32mΩ < 48mΩ
Top View G S	SOT23	Bottom View			
Absolute Maximum Ratings T _A =2	25°C unless	otherwise n	oted		
Parameter		Symbol	Maxin	num	Units
Drain-Source Voltage		V _{DS}	30)	V
Gate-Source Voltage		V _{GS}	±1	2	V
$\begin{array}{c} \text{Continuous Drain} \\ \text{Current} \end{array} \begin{array}{c} \text{T}_{\text{A}} = 25^{\circ}\text{C} \\ \text{T}_{\text{A}} = 70^{\circ}\text{C} \end{array}$		I _D	5.7	7	A
Pulsed Drain Current ^C		I _{DM}	30)	
Power Dissipation ^B $T_A=25^{\circ}C$ $T_A=70^{\circ}C$	P _D	1.4		W	
Junction and Storage Temperature	T _J , T _{STG}	-55 to	150	°C	
	0	0, 010			
Thermal Characteristics					
Parameter		Symbol	Тур	Max	Units
Maximum Junction-to-Ambient ^A	t ≤ 10s	Reve	70	90	°C/W
Maximum Junction-to-Ambient AD	Steady-State	• ` θJA	100	125	°C/W
Maximum Junction-to-Lead	Steady-State	Rou	63	80	°C/W

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC P	ARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	I_{D} =250 μ A, V_{GS} =0V		30			V
1	Zoro Goto Voltago Drain Current	V _{DS} =30V, V _{GS} =0V				1	
DSS			T _J =55°C			5	μΛ
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±12V				100	nA
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =V _{GS} I _D =250μA		0.65	1.05	1.45	V
I _{D(ON)}	On state drain current	V _{GS} =4.5V, V _{DS} =5V		30			Α
		V _{GS} =10V, I _D =5.7A			18	26.5	m0
P	Static Drain Source On Resistance		T _J =125°C		28	38	1115.2
DS(ON)	Static Dram-Source On-Resistance	V _{GS} =4.5V, I _D =5A			19	32	mΩ
		V _{GS} =2.5V, I _D =3A		24	48	mΩ	
g fs	Forward Transconductance	V _{DS} =5V, I _D =5.7A		33		S	
V _{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.7	1	V	
I _s	Maximum Body-Diode Continuous Curre	ent				2	Α
DYNAMIC	PARAMETERS					•	
C _{iss}	Input Capacitance				630		pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =15V, f=	1MHz		75		pF
C _{rss}	Reverse Transfer Capacitance				50		pF
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1	MHz	1.5	3	4.5	Ω
SWITCHI	NG PARAMETERS						
Q _g	Total Gate Charge				6	7	nC
Q _{gs}	Gate Source Charge	V _{GS} =4.5V, V _{DS} =15V,	I _D =5.7A		1.3		nC
Q _{gd}	Gate Drain Charge]			1.8		nC
t _{D(on)}	Turn-On DelayTime				3		ns
t _r	Turn-On Rise Time	V _{GS} =10V, V _{DS} =15V, R _I =2.6Ω,			2.5		ns
t _{D(off)}	Turn-Off DelayTime	R _{GEN} =3Ω			25		ns
t _f	Turn-Off Fall Time	1			4		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =5.7A, dl/dt=100A/µ	JS		8.5		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =5.7A, dl/dt=100A/ _l	lS		2.6		nC

A. The value of R_{6JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The value in any given application depends on the user's specific board design.

value in any given application depends on the user's specific board design. B. The power dissipation P_D is based on T_{J(MAX)}=150° C, using ≤ 10s junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150° C. Ratings are based on low frequency and duty cycles to keep initial T_J=25° C.

D. The R_{AJA} is the sum of the thermal impedence from junction to lead R_{AJL} and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using ${<}300\mu s$ pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150° C. The SOA curve provides a single pulse rating.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

△④重庆万国

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Document No.	PDCQ-00005
Version	А
Title	CQ3400A Marking Description

SOT-23 PACKAGE MARKING DESCRIPTION

Green product

NOTE:

- P Package and product type
- N Last digital of product number
- W Week code
- A Assembly location code
- L&T Assembly lot code

PART NO.	DESCRIPTION	CODE (PN)
CQ3400A	Green product	X0

Version

А

SOT23 PACKAGE OUTLINE

RECOMMENDED LAND PATTERN

UNIT: mm

SYMBOLS	DIMENS	IONS IN MILLI	METERS	DIMI	ENSIONS IN INC	CHES
STMBOLS	MIN	NOM	MAX	MIN	NOM	MAX
А	0.85		1.25	0.033		0.049
A1	0.00		0.13	0.000		0.005
A2	0.70	1.00	1.15	0.028	0.039	0.045
b	0.30	0.40	0.50	0.012	0.016	0.020
c	0.08	0.13	0.20	0.003	0.005	0.008
D	2.80	2.90	3.10	0.110	0.114	0.122
E	2.60	2.80	3.00	0.102	0.110	0.118
E1	1.40	1.60	1.80	0.055	0.063	0.071
e		0.95 BSC			0.037 BSC	
e1	1.90 BSC				0.075 BSC	
L	0.30		0.60	0.012		0.024
θ1	0°	5°	8°	0°	5°	8°

NOTE

- 1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH OR GATE BURRS.
- MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 5 MILS EACH.
- 2. TOLERANCE ±0.100 mm (4 mil) UNLESS OTHERWISE SPECIFIED.
- 3. DIMENSION L IS MEASURED IN GAUGE PLANE.
- 4. CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.
- 5. ALL DIMENSIONS ARE IN MILLIMETERS.

SOT23 Tape and Reel Data

SOT23 Carrier Tape

UNIT: MM

PACKAGE	A0	BO	К0	DO	D1	W	E1	F	P0	P1	P2	Т	A2	B2
SDT23 (8 mm)	3.05-3.40	3.00-3.38	1.20- 1.47	1.55 ±0.05	1.00 ±0.25	8.00 ±0.30	1.75 ±0.10	3.50 ±0.05	4.00 ±0.10	4.00 ±0.10	2.00 ±0.05	0.18 -0.25	0.84-1.24	2.29-2.69

COMPONENTS TAPE

DRIENTATION IN POCKET

LEADER TAPE

500 mm MIN. DR

TRAILER TAPE

300 mm MIN. DR

CQAOS Semiconductor Product Reliability Report

Plastic Encapsulated Device

Chongqing Alpha & Omega Semiconductor, Limited

Apr, 2020

<u>〈</u>全重庆万国

This CQAOS product reliability report summarizes the qualification result for CQ3400A. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that CQ3400A passes CQAOS quality and reliability requirements. The released product will be categorized by the process family and be routine monitored for continuously improving the product quality.

Test Item	Test Condition	Time Point	Total Sample Size	Number of Failures	Reference Standard
HTGB	Temp = 150°C , Vgs=100% of Vgsmax	168 / 500 / 1000 hours	924 pcs	0	JESD22-A108
HTRB	Temp = 150°C, Vds=80% of Vdsmax	168 / 500 / 1000 hours	924 pcs	0	JESD22-A108
Precondition (Note A)	168hr 85°C / 85%RH + 3 cycle reflow@260°C (MSL 1)	-	4620 pcs	0	JESD22-A113
HAST	130°C , 85%RH, 33.3 psia, Vds = 80% of Vdsmax	96 hours	693 pcs	0	JESD22-A110
H3TRB	85°C , 85%RH, Vds = 80% of Vdsmax	1000 hours	693 pcs	0	JESD22-A101
Autoclave	121°C , 29.7psia, RH=100%	96 hours	924 pcs	0	JESD22-A102
Temperature Cycle	-65°C to 150°C, air to air,	1000 cycles	924 pcs	0	JESD22-A104
HTSL	Temp = 150°C	1000 hours	693 pcs	0	JESD22-A103
IOL	∆ Tj = 100°C	15000 cycles	693 pcs	0	MIL-STD-750 Method 1037

I. Reliability Stress Test Summary and Results

Note: The reliability data presents total of available generic data up to the published date. Note A: MSL (Moisture Sensitivity Level) 1 based on J-STD-020

II. Reliability Evaluation

FIT rate (per billion): 1.91 MTTF = 59839 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size. Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate = $Chi^2 x \ 10^9 / [2 (N) (H) (Af)] = 1.91$

MTTF = 10^9 / FIT = 59839 years

Chi² = Chi Squared Distribution, determined by the number of failures and confidence interval

- \mathbf{N} = Total Number of units from burn-in tests
- **H** = Duration of burn-in testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = $55^{\circ}C$) Acceleration Factor [**Af**] = **Exp** [Ea / k (1/Tj u - 1/Tj s)]

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	259	87	32	13	5.64	2.59	1

Tj s = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tj u =The use junction temperature in degree (Kelvin), K = C+273.16

 \mathbf{k} = Boltzmann's constant, 8.617164 X 10⁻⁵eV / K