RICOH

0.8% LOW VOLTAGE DETECTOR

NO.EA-160-160226

OUTLINE

The R3114x series are CMOS-based voltage detector ICs with high detector threshold accuracy and ultra-low supply current, which can be operated at an extremely low voltage and is used for system reset as an example.

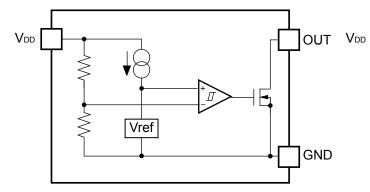
Each of these ICs consists of a voltage reference unit, a comparator, resistors for detector threshold setting, an output driver and a hysteresis circuit. The detector threshold is fixed with high accuracy internally and does not require any adjustment.

Two output types, Nch open drain type and CMOS type are available.

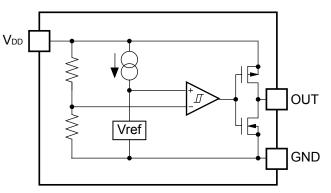
The R3114x series are operable at a lower voltage than that of the R3111x series, and can be driven by a single battery.

Three types of packages, SOT-23-5, SC-82AB, and DFN(PLP)1010-4 are available.

FEATURES


- Operating Voltage Range......0.5V to 6.0V (Topt=25°C)
- Detector Threshold Range......0.7V to 5.0V (0.1V steps)
 - (For other voltages, please refer to MARK INFORMATIONS.)
- Temperature-Drift Coefficient of Detector Threshold Typ. ±30ppm/°C
- Output Types.....Nch Open Drain "L" and CMOS
- Packages DFN(PLP)1010-4, SC-82AB, SOT-23-5

APPLICATIONS


- CPU and Logic Circuit Reset
- Battery Checker
- Window Comparator
- Wave Shaping Circuit
- Battery Back-up Circuit
- Power Failure Detector

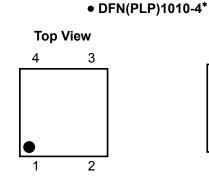
BLOCK DIAGRAMS

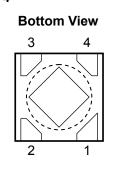
Nch Open Drain Output (R3114xxx1A)

CMOS Output (R3114xxx1C)

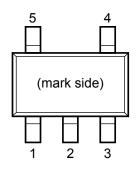
SELECTION GUIDE

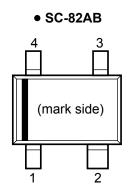
The package type, the detector threshold, the output type and the taping type for the ICs can be selected at the users' request.


Product Name	Product Name Package		Pb Free	Halogen Free		
R3114Kxx1*-TR	DFN(PLP)1010-4	10,000 pcs	Yes	Yes		
R3114Qxx1*-TR-FE	SC-82AB	3,000 pcs	Yes	Yes		
R3114Nxx1*-TR-FE	3114Nxx1*-TR-FE SOT-23-5		Yes	Yes		
xx: The detector thresh (For other voltages,	old can be designated please refer to MARK	in the range from 0.7V(INFORMATIONS.)	(07) to 5.0V(50) in 0.	1V steps.		


* : Designation of Output Type

(A) Nch Open Drain


(C) CMOS


PIN CONFIGURATIONS

PIN DESCRIPTIONS

• DFN(PLP)1010-4*

Pin No.	Symbol	Description
1	OUT	Output Pin ("L" at detection)
2	NC	No Connection
3	GND	Ground Pin
4	Vdd	Input Pin

 *) Tab is GND level. (They are connected to the reverse side of this IC.) The tab is better to be connected to the GND, but leaving it open is also acceptable.

• SOT-23-5

Pin No.	Symbol	Description
1	OUT	Output Pin ("L" at detection)
2	Vdd	Input Pin
3	GND	Ground Pin
4	NC	No Connection
5	NC	No Connection

• SC-82AB

Pin No.	Symbol	Description
1	OUT	Output Pin ("L" at detection)
2	Vdd	Input Pin
3	NC	No Connection
4	GND	Ground Pin

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
VDD	Supply Voltage	7.0	V
Maur	Output Voltage (Nch Open Drain Output)	Vss-0.3 to 7.0	V
Vout	Output Voltage (CMOS Output)	Vss-0.3 to VDD+0.3	v
Ιουτ	Output Current	20	mA
	Power Dissipation (SOT-23-5)*	420	
PD	Power Dissipation (SC-82AB)*	380	mW
	Power Dissipation (DFN(PLP)1010-4)*	400	
Topt	Operating Temperature Range	-40 to 85	°C
Tstg	Storage Temperature Range	–55 to 125	°C

*) For Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field.

The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

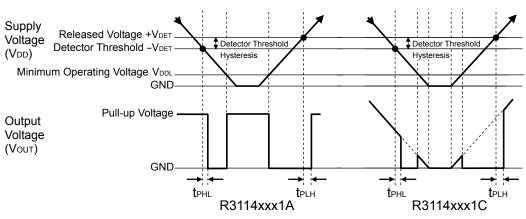
All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

• R3114xxx1A/C values indicate $-40^{\circ}C \le T_{opt} \le 85^{\circ}C$, unless otherwise noted. Topt=25°C

Item	Conditions			Min.	Тур.	Max.	Unit		
	Topt=25	5°C	1.5V < -	$V_{\text{DET}} \leq 5.0V$	-V _{DET} × 0.992		-V _{DET} ×1.008	V	
Detector Threehold			$0.7V \leq \text{-V}_{\text{DET}} \leq 1.5V$		-12		+12	mV	
Detector Threshold		≤ Topt ≤	1.5V < -	$1.5V < -V_{\text{DET}} \le 5.0V$			-V _{DET} × 1.015	V	
			0.7V ≤ -	$V_{\text{DET}} \le 1.5V$	-22.5		+22.5	mV	
Detector Threshold Hysteresis		-V _{DET} × 0.04		-V _{DET} × 0.07	V				
			0.7V ≤ -	Vdet < 1.6V			1.40		
		0 11/	1.6V ≤ -	Vdet < 3.1V			1.50		
Iss Supply Current	V DD=-V	DET - U. I V	3.1V ≤ -	Vdet < 4.1V			1.60		
			4.1V ≤ -	$V_{\text{DET}} \leq 5.0V$			1.70	Δ	
			0.7V ≤ -	Vdet < 1.6V			1.20	μA	
			1.6V ≤ -	$1.6V \leq -V_{DET} < 3.1V$			1.20		
	VDD=-V	DET +1.0V	+1.0V 3.1V ≤ -V _{DET} < 4				1.30		
	$4.1V \le -V_{\text{DET}} \le 5.0$		$V_{\text{DET}} \leq 5.0V$			1.40			
Maximum Operating Voltage					6	V			
Minimum Operating	Topt=25	5°C					0.50	V	
Voltage ^{*1}	-40°C	\leq Topt \leq 85°C					0.55	V	
		V _{DD} =0.55V, V _{DS} =0.05V			7			μA	
			< 1.1V						
			< 1.6V						
Output Current (Driver Output Pin)		$1.6V \leq -V_{\text{DET}}$	$1.6V \leq -V_{\text{DET}} < 3.1V$		1.00			mA	
		$3.1V \leq -V_{\text{DET}}$	≤ 5.0V	V _{DD} =3.0V V _{DS} =0.5V	2.40				
	D-1-*2	$0.7V \leq -V_{\text{DET}}$	< 4.0V	V _{DD} =4.5V V _{DS} =-2.1V	0.65				
	PCN [*]	$4.0V \leq \text{-V}_{\text{DET}} \leq 5.0V$		V _{DD} =6.0V V _{DS} =-2.1V	0.90			mA	
Nch Driver Leakage Current*3	VDD=6.0	•			80	nA			
Detector Threshold Temperature Coefficient						±30		ppm /°C	
Output Delay Time	Vpp=0.5	55V to -VDET+2	.0V or 6.0)V		40		μS	
	Detector Threshold Detector Threshold Hysteresis Supply Current Maximum Operating Voltage Minimum Operating Voltage*1 Output Current (Driver Output Pin) Nch Driver Leakage Current*3 Detector Threshold Temperature Coefficient	Detector Threshold Topt=25 Detector Threshold -40°C Hysteresis VDD=-VI Supply Current VDD=-VI Maximum Operating Voltage VDD=-VI Minimum Operating Voltage Topt=25 Voltage*1 Topt=25 Output Current Topt=25 Voltage*1 Topt=25 Pch*2 Pch*2 Nch Driver Leakage Current*3 VDD=6.0 Detector Threshold VDD=6.0	Detector Threshold $Topt=25^{\circ}C$ Detector Threshold Hysteresis $-40^{\circ}C \leq Topt \leq$ $85^{\circ}C$ Detector Threshold Hysteresis $V_{DD=-V_{DET}} - 0.1V$ $V_{DD=-V_{DET}} - 0.1V$ $V_{DD=-V_{DET}} + 1.0V$ Maximum Operating Voltage $V_{DD=-V_{DET}} + 1.0V$ Maximum Operating Voltage $Topt=25^{\circ}C$ $-40^{\circ}C \leq Topt \leq 85^{\circ}C$ Minimum Operating Voltage $V_{DD=0.55V, V}$ Voltage*1 $Topt=25^{\circ}C$ $-40^{\circ}C \leq Topt \leq 85^{\circ}C$ Output Current (Driver Output Pin) $1.1V \leq -V_{DET}$ $1.1V \leq -V_{DET}$ $1.1V \leq -V_{DET}$ $1.1V \leq -V_{DET}$ $1.6V \leq -V_{DET}$ $1.6V \leq -V_{DET}$ $1.6V \leq -V_{DET}$ $1.1V \leq -V_{DET}$ $1.6V \leq -V_{DET}$ $0.7V \leq -V_{DET}$ 1.6	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{tabular}{ c c c c } \hline \mbox{Topt=25°C} & $1.5V < -V_{DET} \le 5.0V$ \\ \hline $0.7V \le -V_{DET} \le 1.5V$ \\ \hline $-40°C \le T_{OPt} \le $$85°C$ & $1.5V < -V_{DET} \le 1.5V$ \\ \hline $0.7V \le -V_{DET} \le 1.6V$ \\ \hline $1.6V \le -V_{DET} \le 1.6V$ \\ \hline $1.6V \le -V_{DET} \le 3.1V$ \\ \hline $1.1V \le -V_{DET} \le 3.1V$ \\ \hline $1.1V \le -V_{DET} \le 3.1V$ \\ \hline $1.1V \le -V_{DET} \le 1.6V$ \\ \hline $1.6V \le -V_{DET} \le 3.1V$ \\ \hline $1.1V \le -V_{DET} \le 1.6V$ \\ \hline $1.6V \le -V_{DET} \le 3.1V$ \\ \hline $1.6V \le -V_{DET} \le 1.6V$ \\ \hline $V_{DD} = 0.5V$ \\ \hline $$	$ \begin{split} \label{eq:25 C} \mbox{Detector Threshold} & $$$ $$$ $$$ $$$ $$$$ $$$$$$$$$$$$$$$	$ \begin{array}{c c c c c c c } \mbox{Detector Threshold} & $$Topt=25^{\circ}C & $$1.5$V < $$-V_{DET} \leq 5.0V & $$$$. $$$$. $$$. $$$$. $$$$$$$$$$$$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

All of unit are tested and specified under load conditions such that Topt=25°C except for Detector Threshold Temperature Coefficient.


*1: Minimum operating voltage means the value of input voltage when output voltage maintains 0.1V or less.

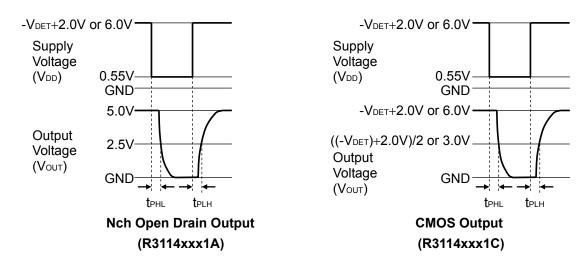
(In case of Nch Open Drain Output type, the output pin is pulled up with a resistance of $470k\Omega$ to 5.0V)

*2: In case of CMOS type

*3: In case of Nch Open Drain type

TIMING CHART

DEFINITION OF OUTPUT DELAY TIME


Output Delay Time (tPLH) is defined as follows:

1. In the case of Nch Open Drain Output:

Under the condition of the output pin (OUT) is pulled up through a resistor of $470k\Omega$ to 5V, the time interval between the rising edge of V_{DD} pulse from 0.55V to (-V_{DET})+2.0V or the time interval of 6.0V pulse voltage is supplied, the becoming of the output voltage to 2.5V.

2. In the case of CMOS Output:

The time interval between the rising edge of V_{DD} pulse from 0.55V to $(-V_{DET})+2.0V$ or the time interval of 6.0V pulse voltage is supplied, the becoming of the output voltage to $((-V_{DET})+2.0V)/2$ or 3.0V.

ELECTRICAL CHARACTERISTICS BY DETECTOR THRESHOLD

• R3114x071A/C to R3114x501A/C

Bold values are checked and guaranteed by design engineering at $-40^{\circ}C \le Topt \le 85^{\circ}C$, unless otherwise noted.

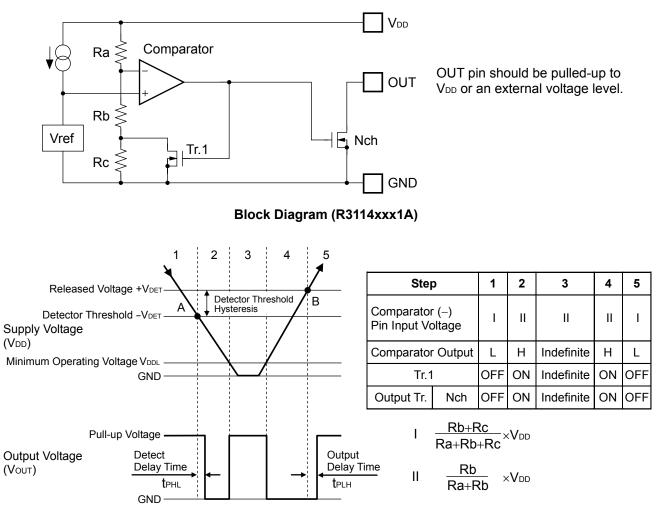
Bold values			guarantes	bu by uoc	Jgri erigiri	comig at						Topt=25°C		
Part		ector shold1		ector hold2		Threshold eresis	Supply	Current1	Supply Current2		Max. Op. Voltage	Min. Op. Voltage		
Number	-VDET1 [V]		-VDET2 [V]		VHYS [V]		Iss1 [µA]		Iss₂ [µA]		VDDH [V]	VDDL [V]		
	Min.	Max.	Min.	Max.	Min.	Max.	Cond.	Max.	Cond.	Max.	Max.	Max.		
R3114x071A/C	0.6880	0.7120	0.6775	0.7225	0.028	0.049								
R3114x081A/C	0.7880	0.8120	0.7775	0.8225	0.032	0.056								
R3114x091A/C	0.8880	0.9120	0.8775	0.9225	0.036	0.063								
R3114x101A/C	0.9880	1.0120	0.9775	1.0225	0.040	0.070								
R3114x111A/C	1.0880	1.1120	1.0775	1.1225	0.044	0.077		1.400						
R3114x121A/C	1.1880	1.2120	1.1775	1.2225	0.048	0.084								
R3114x131A/C	1.2880	1.3120	1.2775	1.3225	0.052	0.091								
R3114x141A/C	1.3880	1.4120	1.3775	1.4225	0.056	0.098								
R3114x151A/C	1.4880	1.5120	1.4775	1.5225	0.060	0.105								
R3114x161A/C	1.5872	1.6128	1.5760	1.6240	0.064	0.112								
R3114x171A/C	1.6864	1.7136	1.6745	1.7255 1.8270	0.068	0.119								
R3114x181A/C R3114x191A/C	1.7856 1.8848	1.8144 1.9152	1.7730 1.8715	1.8270	0.072	0.126 0.133				1.200				
R3114x191A/C	1.9840	2.0160	1.9700	2.0300	0.080	0.133								
R3114x211A/C	2.0832	2.1168	2.0685	2.1315	0.084	0.140								
R3114x221A/C	2.1824	2.2176	2.1670	2.2330	0.088	0.154					6			
R3114x231A/C	2.2816	2.3184	2.2655	2.3345	0.092	0.161		1.500						
R3114x241A/C	2.3808	2.4192	2.3640	2.4360	0.096	0.168								
R3114x251A/C	2.4800	2.5200	2.4625	2.5375	0.100	0.175								
R3114x261A/C	2.5792	2.6208	2.5610	2.6390	0.104	0.182						0.50		
R3114x271A/C	2.6784	2.7216	2.6595	2.7405	0.108	0.189	.,							
R3114x281A/C	2.7776	2.8224	2.7580	2.8420	0.112	0.196	VDD=		VDD=			0.55		
R3114x291A/C	2.8768	2.9232	2.8565	2.9435	0.116	0.203	-VDET		-VDET			0.55		
R3114x301A/C	2.9760	3.0240	2.9550	3.0450	0.120	0.210	-0.1V		+1.0V					
R3114x311A/C	3.0752	3.1248	3.0535	3.1465	0.124	0.217						*Note1		
R3114x321A/C	3.1744	3.2256	3.1520	3.2480	0.128	0.224						Noter		
R3114x331A/C	3.2736	3.3264	3.2505	3.3495	0.132	0.231								
R3114x341A/C	3.3728	3.4272	3.3490	3.4510	0.136	0.238								
R3114x351A/C	3.4720	3.5280	3.4475	3.5525	0.140	0.245		1.600		1.300				
R3114x361A/C	3.5712	3.6288	3.5460	3.6540	0.144	0.252		1.000		1.000				
R3114x371A/C	3.6704	3.7296	3.6445	3.7555	0.148	0.259								
R3114x381A/C	3.7696	3.8304	3.7430	3.8570	0.152	0.266								
R3114x391A/C	3.8688	3.9312	3.8415	3.9585	0.156	0.273								
R3114x401A/C	3.9680	4.0320	3.9400	4.0600	0.160	0.280					4			
R3114x411A/C	4.0672	4.1328	4.0385	4.1615	0.164	0.287								
R3114x421A/C	4.1664	4.2336	4.1370	4.2630	0.168	0.294								
R3114x431A/C	4.2656	4.3344	4.2355	4.3645	0.172	0.301		<mark>1.700</mark>						
R3114x441A/C	4.3648	4.4352	4.3340	4.4660	0.176	0.308								
R3114x451A/C	4.4640	4.5360	4.4325	4.5675	0.180	0.315				1.400				
R3114x461A/C R3114x471A/C	4.5632	4.6368	4.5310	4.6690	0.184	0.322								
R3114x471A/C R3114x481A/C	4.6624 4.7616	4.7376 4.8384	4.6295 4.7280	4.7705 4.8720	0.188	0.329 0.336								
R3114x481A/C R3114x491A/C	4.8608	4.8384	4.7280	4.8720	0.192	0.336								
	4.8608		4.8265		0.196	0.343								
R3114x501A/C	4.9000	5.0400	4.9200	5.0750	0.200	0.350								

*Note1) V_{DD} value when output voltage is equal or less than 0.1V. In the case of Nch Open Drain output type, the output pin is pulled up to 5.0V through 470kΩ resistor.

R3114x

Curr	Current1 Curre		Nch Driver Output Current2 Iout2 [mA]		Pch Driver Output Current Ioutt3 [mA]		Driver Current	Detector Threshold Temperature Coefficient	Output Delay Time	
							([nA]	∆-VDET/∆Topt [ppm/°C]	tPLH [µS]	
Cond.	Min.	Cond. V _{DD} = 0.6V V _{DS} = 0.5V	Min. 0.020	Cond.	Min.	Cond.	Max.	Тур.	Cond.	Тур.
		V _{DD} = 1.0V V _{DS} = 0.5V	0.400							
VDD= 0.55V VDS=	7	VDD= 1.5V VDS= 0.5V	4.5V 1.000 VDS=	0.650	V _{DD} = 6.0V V _{DS} =	80	±30	VDD= 0.55V ↓ -VDET +2.0V *Note2	40	
0.05V		VDD= 3.0V VDS=	<mark>2.400</mark>			7.0V				
		0.5V		V _{DD} = 6.0V V _{DS} = -2.1V	<mark>0.900</mark>				V _{DD} = 0.55V ↓ 6.0V *Note2	

*Note2) 1. In the case of CMOS output type:

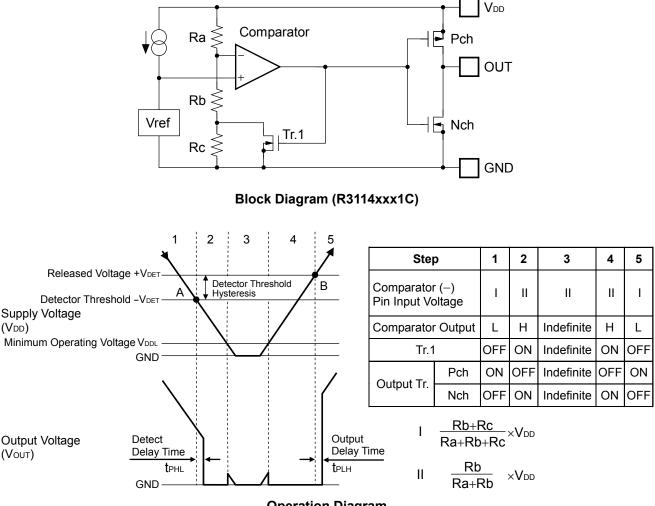

When the voltage is forced from 0.55V to $(-V_{DET})+2.0V$ or a 6.0V pulse voltage is added to V_{DD} , time interval that the output voltage reaches $((-V_{DET})+2.0V)/2$ or a 3.0V.

2. In the case of Nch Open Drain output type:

The output pin is pulled up to 5.0V through $470k\Omega$, and when the voltage is forced from 0.55V to (-V_{DET})+2.0V or a 6.0V pulse voltage is added to V_{DD}, time interval that the output voltage reaches 2.5V.

OPERATION

• Operation of R3114xxx1A

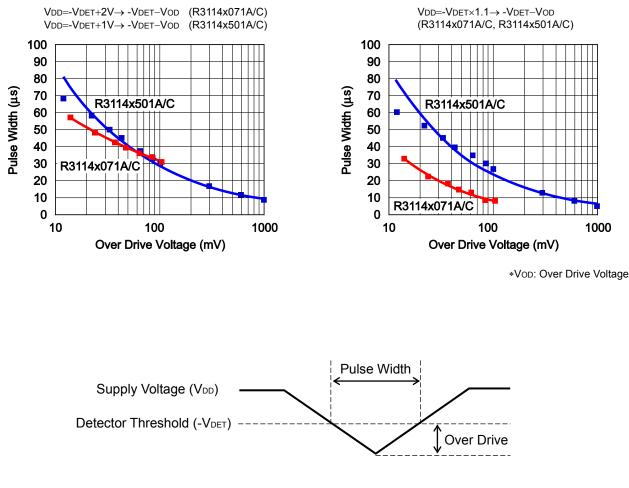


• Explanation of operation

Step 1. The output voltage is equal to the pull-up voltage.

- Step 2. At Point "A", Vref $\geq V_{DD\times}(Rb+Rc)/(Ra+Rb+Rc)$ is true, as a result, the output of comparator is reversed from "L" to "H", therefore the output voltage becomes the GND level. The voltage level of Point A means a detector threshold voltage (-V_{DET}).
- Step 3. When the supply voltage is lower than the minimum operating voltage, the operation of the output transistor becomes indefinite. The output voltage is equal to the pull-up voltage.
- Step 4. The output voltage is equal to the GND level.
- Step 5. At Point "B", Vref ≤ V_{DD}×Rb/(Ra+Rb) is true, as a result, the output of comparator is reversed from "H" to "L", then the output voltage is equal to the pull-up voltage. The voltage level of Point B means a released voltage (+V_{DET}).
- *) The difference between a released voltage and a detector threshold voltage is a detector threshold hysteresis.

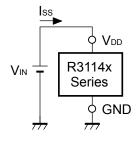
Operation of R3114xxx1C

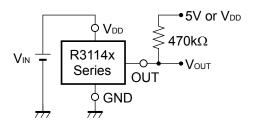

Operation Diagram

• Explanation of operation

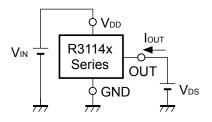
- Step 1. The output voltage is equal to the supply voltage (V_{DD}).
- Step 2. At Point "A", Vref $\geq V_{DD} \times (Rb+Rc)/(Ra+Rb+Rc)$ is true, as a result, the output of comparator is reversed from "L" to "H", therefore the output voltage becomes the GND level. The voltage level of Point A means a detector threshold voltage (-V_{DET}).
- Step 3. When the supply voltage is lower than the minimum operating voltage, the operation of the output transistor becomes indefinite.
- Step 4. The output voltage is equal to the GND level.
- Step 5. At Point "B", Vref ≤ V_{DD×}Rb/(Ra+Rb) is true, as a result, the output of comparator is reversed from "H" to "L", then the output voltage is equal to the supply voltage (V_{DD}). The voltage level of Point B means a released voltage (+V_{DET}).
- *) The difference between a released voltage and a detector threshold voltage is a detector threshold hysteresis.

Detector Operation vs. glitch input voltage to the VDD pin

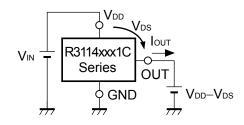

When the R3114x is at released, if the pulse voltage which the detector threshold or lower voltage, the graph below means that the relation between pulse width and the amplitude of the swing to keep the released state for the R3114x.


VDD Input Waveform

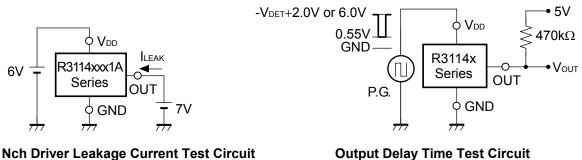
This graph shows the maximum pulse conditions to keep the released voltage. If the pulse with larger amplitude or wider width than the graph above, is input to V_{DD} pin, the reset signal may be output.


TEST CIRCUITS

Supply Current Test Circuit

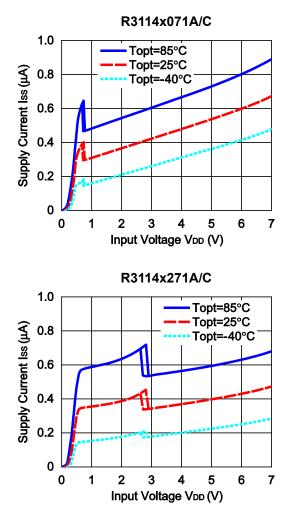


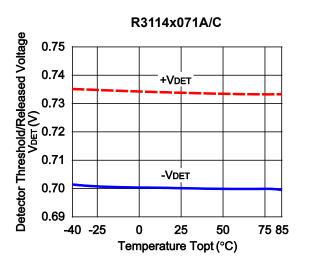
Detector Threshold Test Circuit (Pull-up circuit is not necessary for CMOS Output type.)

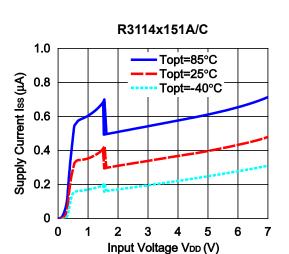


Nch Driver Output Current Test Circuit

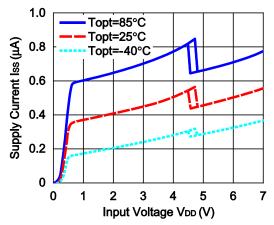
*Apply to Nch Driver Output type only


Pch Driver Output Current Test Circuit *Apply to CMOS Output type only

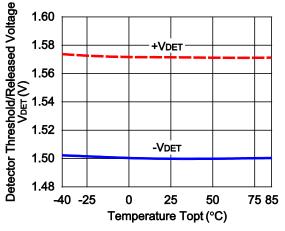

Output Delay Time Test Circuit (Pull-up circuit is not necessary for CMOS Output type.)

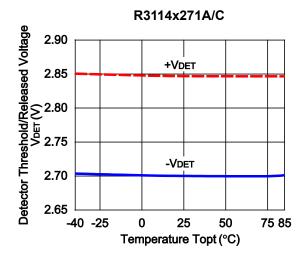

TYPICAL CHARACTERISTICS

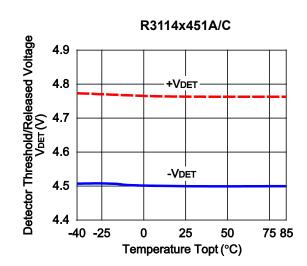
1) Supply Current vs. Input Voltage

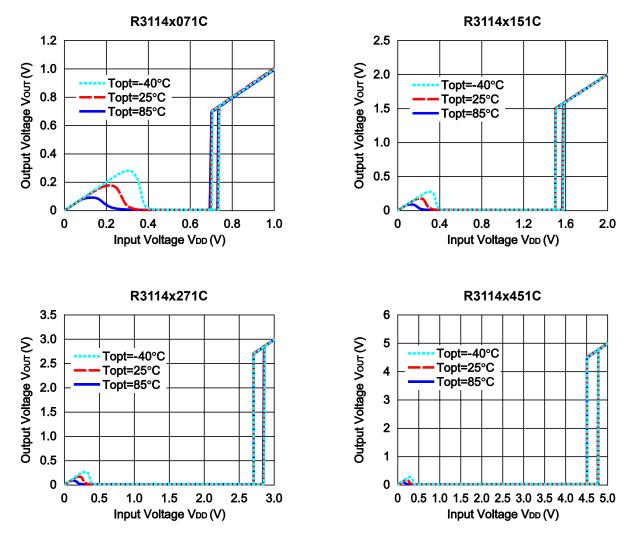


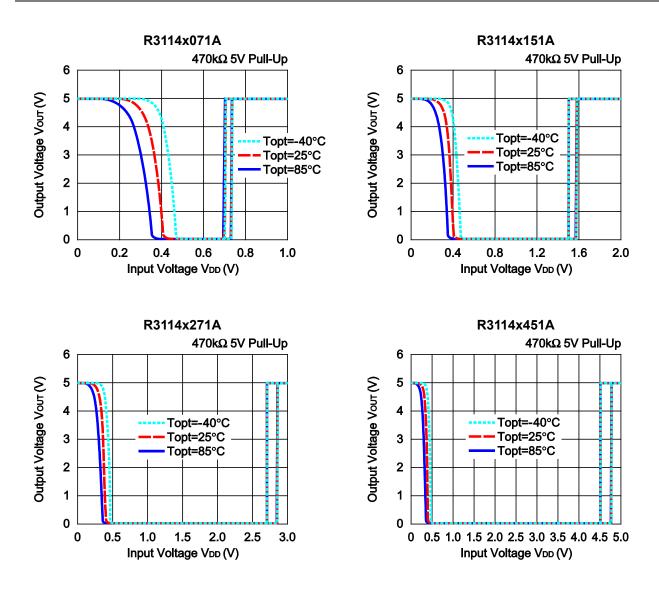
2) Detector Threshold vs. Temperature

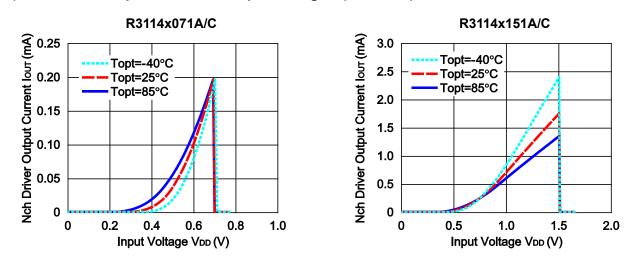


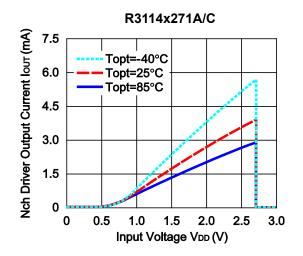


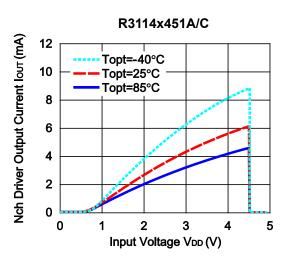

R3114x451A/C

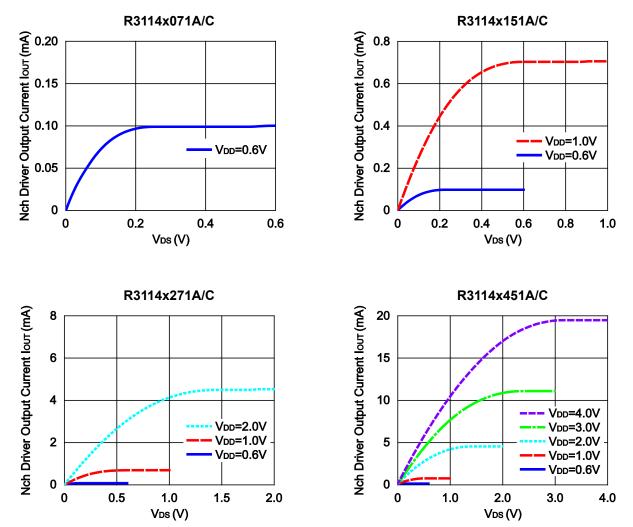

R3114x151A/C

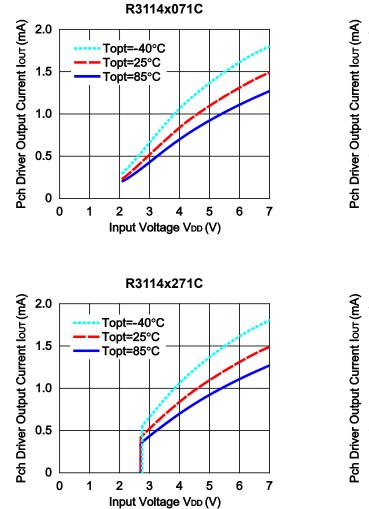


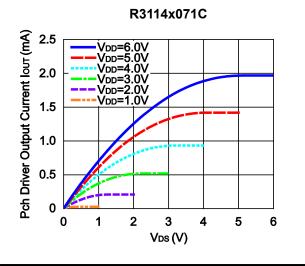


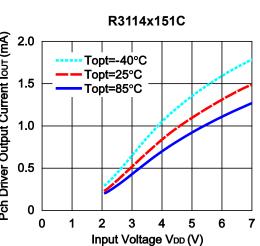

3) Output Voltage vs. Input Voltage

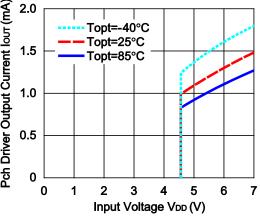



4) Nch Driver Output Current vs. Input Voltage (VDs=0.5V)

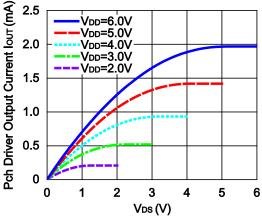


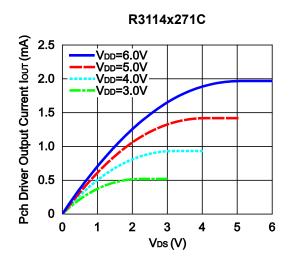

5) Nch Driver Output Current vs. VDs

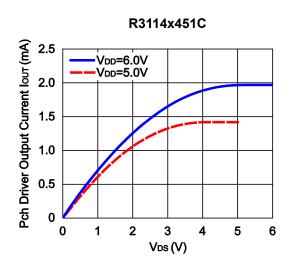


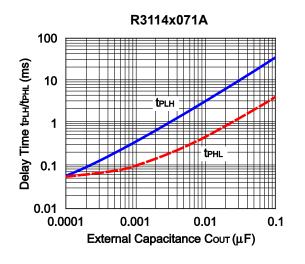

6) Pch Driver Output Current vs. Input Voltage (VDs=-2.1V)

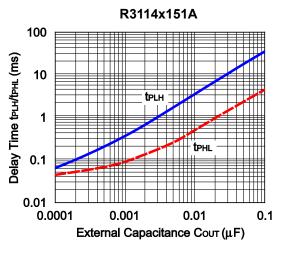
7) Pch Driver Output Current vs. VDs

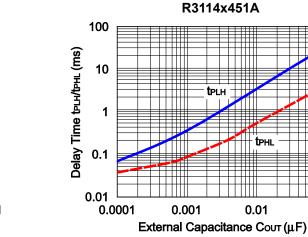


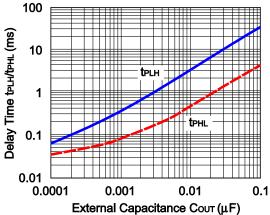

VDD=6.0V VDD=5.0V VDD=4.0V VDD=3.0V


R3114x151C

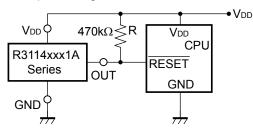

RICOH


2.5

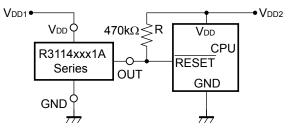



8) Output Delay Time vs. External Capacitance

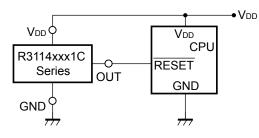
0.1

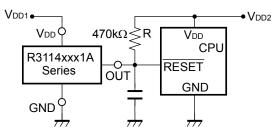


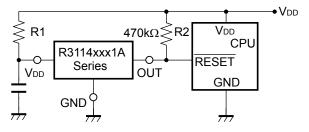
R3114x271A

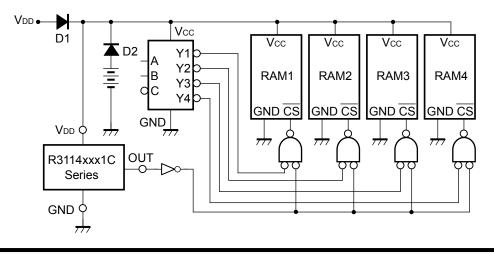

TYPICAL APPLICATION

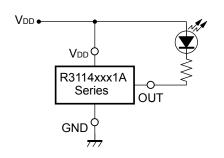
• R3114xxx1A CPU Reset Circuit 1 (Nch Open Drain Output)


Case1. Input Voltage to R3114xxx1A is equal to Input Voltage to CPU

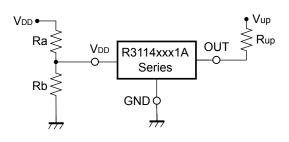

Case2. Input Voltage to R3114xxx1A is unequal to Input Voltage to CPU

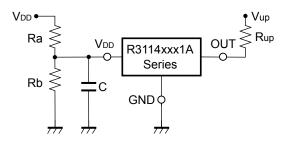

• R3114xxx1C CPU Reset Circuit (CMOS Output)


 R3114xxx1A Output Delay Time Circuit 1 (Nch Open Drain Output)



• R3114xxx1A Output Delay Time Circuit 2 (Nch Open Drain Output)


Memory Back-up Circuit

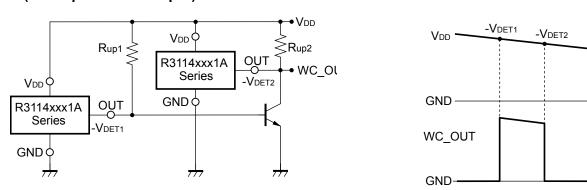


 Voltage level Indicator Circuit (lighted when the power runs out) (Nch Open Drain Output)

 Detector Threshold Adjustable Circuit 1 (Nch Open Drain Output)

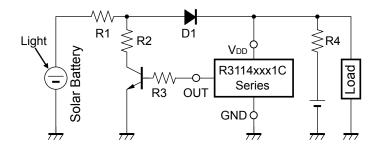
• Detector Threshold Adjustable Circuit 2 (Nch Open Drain Output)

Adjustable Detector Threshold=(-VDET)×(Ra+Rb)/Rb


Hysteresis Voltage=(VHYS)×(Ra+Rb)/Rb

- *1) To prevent oscillation, set $Ra \le 1k\Omega$, $Rb \le 100\Omega$.
- *2) If the value of Ra is set excessively large, voltage drop may occur caused by the supply current of IC itself, and detector threshold and hysteresis voltage may vary.
- *3) If Vup and VDD are connected, the voltage dropdown caused by Rup, may cause difference in the hysteresis voltage.

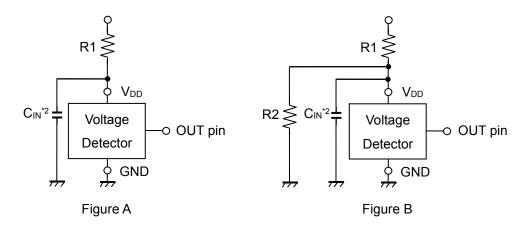
Adjustable Detector Threshold=(-VDET)×(Ra+Rb)/Rb


Hysteresis Voltage=(VHYS)×(Ra+Rb)/Rb

- *1) To prevent oscillation, set $Ra \le 100k\Omega$, $C \ge \le 0.01\mu F$.
- *2) If the value of Ra is set excessively large, voltage drop may occur caused by the supply current of IC itself, and detector threshold and hysteresis voltage may vary.
- *3) If Vup and VDD are connected, the voltage dropdown caused by Rup, may cause difference in the hysteresis voltage.
- *4) If the value of Ra, Rb and C are set excessively large, the delay of the start-up may become too long.

• Window Comparator Circuit (Nch Open Drain Output)

• Over-charge Preventing Circuit


TECHNICAL NOTES

When connecting resistors to the device's input pin

When connecting a resistor (R1) to an input of this device, the input voltage decreases by [Device's Consumption Current] x [Resistance Value] only. And, the cross conduction current*¹, which occurs when changing from the detecting state to the release state, is decreased the input voltage by [Cross Conduction Current] x [Resistance Value] only. And then, this device will enter the re-detecting state if the input voltage reduction is larger than the difference between the detector voltage and the released voltage.

When the input resistance value is large and the VDD is gone up at mildly in the vicinity of the released voltage, repeating the above operation may result in the occurrence of output.

As shown in Figure A/B, set R1 to become 100 k Ω or less as a guide, and connect C_{IN} of 0.1 μ F and more to between the input pin and GND. Besides, make evaluations including temperature properties under the actual usage condition, with using the evaluation board like this way. As a result, make sure that the cross conduction current has no problem.

*1 In the CMOS output type, a charging current for OUT pin is included.

*² Note the bias dependence of capacitors.

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
- 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

https://www.e-devices.ricoh.co.jp/en/

Sales & Support Offices

Ricoh Electronic Devices Co., Ltd.

Shin-Yokohama Office (International Sales) 2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan Phone: +81-50-3814-7687 Fax: +81-45-474-0074

Ricoh Americas Holdings, Inc way, Suite 200 Campbell, CA 95008, U.S.A. 675 Campbell Technology Parl Phone: +1-408-610-3105

Ricoh Europe (Netherlands) B.V. Semiconductor Support Centre

Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands Phone: +31-20-5474-309

Ricoh International B.V. - German Branch Semiconductor Sales and Support Centre Oberrather Strasse 6, 40472 Düsseldorf, Germany Phone: +49-211-6546-0

Ricoh Electronic Devices Korea Co., Ltd. 3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713

Ricoh Electronic Devices Shanghai Co., Ltd. Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203, People's Republic of China

Phone: +86-21-5027-3200 Fax: +86-21-5027-3299 Ricoh Electronic Devices Shanghai Co., Ltd.

Shenzhen Branch 1205, Block D(Jinlong Building), Kingkey 100, Hongbao Road, Luohu District, Shenzhen, China Phone: +86-755-8348-7600 Ext 225

Ricoh Electronic Devices Co., Ltd.

 Taipei office

 Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)

 Phone: +886-2-2313-1621/1622

 Fax: +886-2-2313-1621/1622