RICOH

R3120N Series

AEC-Q100 Compliant

36 V Input Voltage Detector with Delay Function for Automotive Applications

NO.EC-373-170725

OUTLINE

The R3120N is a CMOS-based 36 V input (absolute maximum ratings: 50 V) voltage detector (VD) provided with high detector threshold accuracy and ultra-low supply current. Internally, the R3120N consists of a voltage reference unit, a hysteresis comparator, a resistor net for setting output voltage and an output driver transistor. The R3120NxxxA is equipped with a C_D pin and the R3120NxxxE is equipped with a SENSE pin.

The supply current of IC is only 3.3μ A. The detector threshold range is 2.3 V to 12 V, and the detector threshold accuracy is 1.5%. The output type is Nch. open drain "L" output.

The R3120N is available in a 5-pin SOT-23-5 package. Use of this package achieves high-density mounting on boards.

FEATURES

•	Operating Voltage Range (Maximum Rating) ·····	R3120NxxxA: 1.2 V to 36.0 V (50.0V) R3120NxxxE: 2.1 V to 6.0 V (7.0V)
•	Operating Temperature Range ·····	
•	Supply Current ·····	• Тур. 3.3 μА
•	Detector Threshold Range ·····	··2.3 V to 12.0 V (0.1 V steps)
•	Detector Threshold Accuracy	··±1.5% (Ta=25°C)
•	Detector Threshold Temperature Coefficient	· Typ. ±100 ppm / °C
•	Release Output Delay Time	R3120NxxxA : Typ.85 ms (at $C_D = 0.01$
	μF)	
•	Release Output Delay Time Accuracy	··R3120NxxxA : −50% to 80%
•	Output Type ······	··Nch. Open Drain
•	Package ·····	··SOT-23-5

APPLICATIONS

• Voltage monitoring for car accessories including car audios, car navigation systems, ETC systems.

NO.EC-373-170725

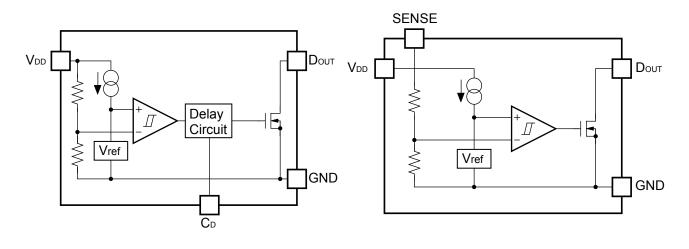
SELECTION GUIDE

The detector threshold and the voltage detection type are user selectable options.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R3120Nxxx*-TR-#E	SOT-23-5	3,000 pcs	Yes	Yes

xxx : Specify the set detector threshold ($-V_{SET}$) in the range of 2.3 V (023) to 12.0 V (120) in 0.1 V steps.

*: Select the voltage detection type from the following;

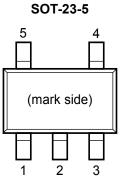

A: with C_D pin type

E: with SENSE pin type

#: Specify the automotive class code.

	Operating Temperature Range	Guaranteed Specs Temperature Range	Screening	AEC-Q100
А	−40°C to 105°C	25°C	High Temperatures	Grade 2

BLOCK DIAGRAM



R3120NxxxA

R3120NxxxE

NO.EC-373-170725

PIN DESCRIPTION

R3120N Pin Configurations

Pin No.	Symbol	Description
1	V _{DD}	Input Pin
2	GND ⁽¹⁾	Ground Pin
3	GND ⁽¹⁾	Ground Pin
4	D _{OUT}	Output Pin ("L" active at detection)
C _D Release Output Delay Set Pin (R3120NxxxA)		Release Output Delay Set Pin (R3120NxxxA)
5	SENSE	VD Voltage SENSE Pin (R3120NxxxE)

⁽¹⁾ No.2 and No.3 pins must be wired to the GND plane when mounted on board.

NO.EC-373-170725

ABSOLUTE MAXIMUM RATINGS

Symbol	Item		Rating	Unit
N/	Supply Voltage (R3120NxxxA)		-0.3 to 50.0	V
Vdd	Supply Voltage (R3120NxxxE)		-0.3 to 7.0	V
V _{DOUT}	Dout Pin Output Voltage		-0.3 to 7.0	V
Vcd	C _D Pin Output Voltage (R3120Nxx	-0.3 to 7.0	V	
VSENSE	SENSE Pin Input Voltage (R3120N	√xxxE)	-0.3 to 50.0	V
Іоит	Dout Pin Output Current		20	mA
PD	Power Dissipation (SOT-23-5) ⁽¹⁾	420	mW	
Tj	Junction Temperature	−40 to 125	°C	
Tstg	Storage Temperature		−55 to 125	°C

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS

Symbol	Item	Rating	Unit
VDD	Operating Voltage (R3120NxxxA)	1.25 to 36	V
VDD	Operating Voltage (R3120NxxxE)	2.1 to 6	V
VSENSE	SENSE Pin Input Voltage (R3120NxxxE)	0 to 36	V
Та	Operating Temperature Range	−40 to 105	°C

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

⁽¹⁾ Refer to *POWER DISSIPATION* for detailed information.

NO.EC-373-170725

ELECTRICAL CHARACTERISTICS

 C_D = 1000 pF, pulled-up to 5 V with 100 k Ω , unless otherwise specified.

The specifications surrounded by \square are guaranteed by design engineering at - 40°C ≤ Ta ≤105°C.

R3120NxxxA (Ta = 25°C)								
Symbol	ltem	Conditions			Min.	Тур.	Max.	Unit
		V nin	Ta = 25°	С	x 0.985		x 1.015	
-Vdet	Detector Threshold	V_{DD} pin $-40^{\circ}C \le Ta \le 105^{\circ}C$		x 0.970		x 1.020	V	
V _{HYS}	Detector Threshold Hysteresis				3.5	5	6.5	%
	Supply Current	V _{DD} = -V _{SET} -	•0.1 V			3.3	5.6	
lss	Supply Current	V _{DD} = -V _{SET} +1.0 V			3.3	5.5	μA	
V	Minimum Operating	Ta = 25°C				1.2	V	
Vddl	Voltage ⁽¹⁾	-40°C ≤ Ta ≤ 105°C				1.25		
	Output Current (Nch Driver Output Pin)	V _{DD} = 1.5 V, V _{DS} = 0.05 V		230			μA	
		2.3 V ≤ −V _{SET}	<2.6 V	V _{DD} = 2.2 V V _{DS} = 0.5 V	2.8			
Ιουτ		2.6 V ≤ −V _{SET}	<3.0 V	V _{DD} = 2.5 V V _{DS} = 0.5 V	3.3			mA
		3.0V ≤ −V _{SET}		V _{DD} = 2.9 V V _{DS} = 0.5 V	3.5			
ILEAK	Nch. Driver Leakage Current	V _{DD} = 36 V, V _{DS} = 6.0 V				0.2	μA	
tdelay	Release Output Delay Time	V_{DD} = 1.5 V \rightarrow -V _{SET} + 2.0 V C _D = 0.01 µF		2.0 V	45	85	150	ms

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj≈Ta=25°C).

 $^{(1)}$ The value is the minimum operating voltage when the output voltage is 0.1 V or less at detection. (The pull-up resistance; 100 k Ω , the pull-up voltage; 5.0 V)

NO.EC-373-170725

Pulled-up to 5 V with 100 k Ω , unless otherwise specified. The specifications surrounded by ______ are guaranteed by design engineering at - 40°C \leq Ta \leq 105°C.

R3120NxxxE (Ta = 25°C)								
Symbol	Item	Conditions		Min.	Тур.	Max.	Unit	
-V _{DET}	Detector Threehold	SENSE pin	Ta = 25	5°C	x 0.985		x 1.015	V
-VDET	Detector Threshold	V _{DD} = 6 V	-40°C :	≤ Ta ≤ 105°C	x 0.970		x 1.020	v
V _{HYS}	Detector Threshold Hysteresis	V _{DD} = 6 V			3.5	5	6.5	%
		V_{DD} = 6 V, V_{SEN}	_{ISE} = −V _S	_{et} – 0.1 V		3.3	5.5	
lss	Supply Current	V _{DD} = 6 V, V _{SEN}	= 6 V, V _{SENSE} = -V _{SET} + 1.0 V			3.3	5.5	μA
Vddl	Minimum Operating Voltage ⁽¹⁾						2.1	V
Rsense	SENSE Resistance				4.5		120	MΩ
Іоит	Output Current	V _{SENSE} < -V _{DET}		V _{DD} = 2.1 V V _{DS} = 0.05 V	420			μA
1001	(Nch. Driver Output Pin)			V _{DD} = 2.2 V V _{DS} = 0.5 V	2.8			mA
ILEAK	Nch. Driver Leakage Current	V _{DD} = 6 V, V _{SENSE} = 36 V, V _{DS} = 6.0 V				0.2	μA	
t _{PLH}	Release Output Delay Time	V_{DD} = 6 V V_{SENSE} = 1.5 V \rightarrow -V _{SET} + 2.0 V			15		μs	

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj≈Ta=25°C).

 $^{^{(1)}}$ The value is the minimum operating voltage to define $V_{\text{DOUT}}.$

NO.EC-373-170725

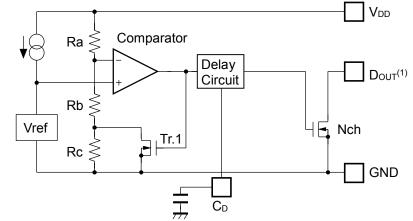
Product-specific Electric Characteristics

The specifications surrounded by \square are guaranteed by design engineering at - 40°C ≤ Ta ≤105°C.

R3120NxxxA/E

Product Name		рет [V] (Та = 25			V] (−40°C ≤ Ta ≤	,
	Min.	Тур.	Max.	Min.	Тур.	Max.
R3120N023x	2.266	2.300	2.334	2.231	2.300	2.346
R3120N024x	2.364	2.400	2.436	2.328	2.400	2.448
R3120N025x	2.463	2.500	2.537	2.425	2.500	2.550
R3120N026x	2.561	2.600	2.639	2.522	2.600	2.652
R3120N027x	2.660	2.700	2.740	2.619	2.700	2.754
R3120N028x	2.758	2.800	2.842	2.716	2.800	2.856
R3120N029x	2.857	2.900	2.943	2.813	2.900	2.958
R3120N030x	2.955	3.000	3.045	2.910	3.000	3.060
R3120N031x	3.054	3.100	3.146	3.007	3.100	3.162
R3120N032x	3.152	3.200	3.248	3.104	3.200	3.264
R3120N033x	3.251	3.300	3.349	3.201	3.300	3.366
R3120N034x	3.349	3.400	3.451	3.298	3.400	3.468
R3120N035x	3.448	3.500	3.552	3.395	3.500	3.570
R3120N036x	3.546	3.600	3.654	3.492	3.600	3.672
R3120N037x	3.645	3.700	3.755	3.589	3.700	3.774
R3120N038x	3.743	3.800	3.857	3.686	3.800	3.876
R3120N039x	3.842	3.900	3.958	3.783	3.900	3.978
R3120N040x	3.940	4.000	4.060	3.880	4.000	4.080
R3120N041x	4.039	4.100	4.161	3.977	4.100	4.182
R3120N042x	4.137	4.200	4.263	4.074	4.200	4.284
R3120N043x	4.236	4.300	4.364	4.171	4.300	4.386
R3120N044x	4.334	4.400	4.466	4.268	4.400	4.488
R3120N045x	4.433	4.500	4.567	4.365	4.500	4.590
R3120N046x	4.531	4.600	4.669	4.462	4.600	4.692
R3120N047x	4.630	4.700	4.770	4.559	4.700	4.794
R3120N048x	4.728	4.800	4.872	4.656	4.800	4.896
R3120N049x	4.827	4.900	4.973	4.753	4.900	4.998
R3120N050x	4.925	5.000	5.075	4.850	5.000	5.100
R3120N051x	5.024	5.100	5.176	4.947	5.100	5.202
R3120N052x	5.122	5.200	5.278	5.044	5.200	5.304
R3120N053x	5.221	5.300	5.379	5.141	5.300	5.406
R3120N054x	5.319	5.400	5.481	5.238	5.400	5.508
R3120N055x	5.418	5.500	5.582	5.335	5.500	5.610
R3120N056x	5.516	5.600	5.684	5.432	5.600	5.712
R3120N057x	5.615	5.700	5.785	5.529	5.700	5.814
R3120N058x	5.713	5.800	5.887	5.626	5.800	5.916
R3120N059x	5.812	5.900	5.988	5.723	5.900	6.018
R3120N060x	5.910	6.000	6.090	5.820	6.000	6.120
R3120N061x	6.009	6.100	6.191	5.917	6.100	6.222
R3120N062x	6.107	6.200	6.293	6.014	6.200	6.324
R3120N063x	6.206	6.300	6.394	6.111	6.300	6.426
R3120N064x	6.304	6.400	6.496	6.208	6.400	6.528
R3120N065x	6.403	6.500	6.597	6.305	6.500	6.630
R3120N066x	6.501	6.600	6.699	6.402	6.600	6.732
R3120N067x	6.600	6.700	6.800	6.499	6.700	6.834
R3120N068x	6.698	6.800	6.902	6.596	6.800	6.936
R3120N069x	6.797	6.900	7.003	6.693	6.900	7.038

NO.EC-373-170725


The specifications surrounded by \square are guaranteed by design engineering at - 40°C ≤ Ta ≤105°C.

Product Name –V _{DET} [V] (Ta = 25°C		°C)	-Vdet [V	/] (−40°C ≤ Ta ≤	105°C)	
Product Name	Min.	Тур.	Max.	Min.	Тур.	Max.
R3120N070x	6.895	7.000	7.105	6.790	7.000	7.140
R3120N071x	6.994	7.100	7.206	6.887	7.100	7.242
R3120N072x	7.092	7.200	7.308	6.984	7.200	7.344
R3120N073x	7.191	7.300	7.409	7.081	7.300	7.446
R3120N074x	7.289	7.400	7.511	7.178	7.400	7.548
R3120N075x	7.388	7.500	7.612	7.275	7.500	7.650
R3120N076x	7.486	7.600	7.714	7.372	7.600	7.752
R3120N077x	7.585	7.700	7.815	7.469	7.700	7.854
R3120N078x	7.684	7.800	7.917	7.567	7.800	7.956
R3120N079x	7.782	7.900	8.018	7.663	7.900	8.058
R3120N080x	7.880	8.000	8.120	7.760	8.000	8.160
R3120N081x	7.979	8.100	8.221	7.858	8.100	8.262
R3120N082x	8.078	8.200	8.323	7.955	8.200	8.364
R3120N083x	8.176	8.300	8.424	8.052	8.300	8.466
R3120N084x	8.274	8.400	8.526	8.148	8.400	8.568
R3120N085x	8.373	8.500	8.627	8.246	8.500	8.670
R3120N086x	8.472	8.600	8.729	8.343	8.600	8.772
R3120N087x	8.570	8.700	8.830	8.440	8.700	8.874
R3120N088x	8.669	8.800	8.932	8.537	8.800	8.976
R3120N089x	8.767	8.900	9.033	8.634	8.900	9.078
R3120N090x	8.866	9.000	9.135	8.731	9.000	9.180
R3120N091x	8.964	9.100	9.236	8.828	9.100	9.282
R3120N092x	9.063	9.200	9.338	8.925	9.200	9.384
R3120N093x	9.161	9.300	9.439	9.022	9.300	9.486
R3120N094x	9.260	9.400	9.541	9.119	9.400	9.588
R3120N095x	9.358	9.500	9.642	9.216	9.500	9.690
R3120N096x	9.457	9.600	9.744	9.313	9.600	9.792
R3120N097x	9.555	9.700	9.845	9.410	9.700	9.894
R3120N098x	9.654	9.800	9.947	9.507	9.800	9.996
R3120N099x	9.752	9.900	10.048	9.604	9.900	10.098
R3120N100x	9.850	10.000	10.150	9.700	10.000	10.200
R3120N101x	9.949	10.100	10.251	9.797	10.100	10.302
R3120N102x	10.047	10.200	10.353	9.894	10.200	10.404
R3120N103x	10.146	10.300	10.454	9.991	10.300	10.506
R3120N104x	10.244	10.400	10.556	10.088	10.400	10.608
R3120N105x	10.343	10.500	10.657	10.185	10.500	10.710
R3120N106x	10.441	10.600	10.759	10.282	10.600	10.812
R3120N107x	10.540	10.700	10.860	10.379	10.700	10.914
R3120N108x	10.638	10.800	10.962	10.476	10.800	11.016
R3120N109x	10.737	10.900	11.063	10.573	10.900	11.118
R3120N110x	10.835	11.000	11.165	10.670	11.000	11.220
R3120N111x	10.934	11.100	11.266	10.767	11.100	11.322
R3120N112x	11.032	11.200	11.368	10.864	11.200	11.424
R3120N113x	11.131	11.300	11.469	10.961	11.300	11.526
R3120N113x	11.229	11.400	11.409	11.058	11.400	11.628
R3120N114x R3120N115x	11.328	11.500	11.672	11.155	11.500	11.730
R3120N115x R3120N116x	11.328	11.600	11.672	11.155	11.600	11.832
	11.525	11.600			11.600	
R3120N117x			11.875	11.349		11.934
R3120N118x	11.623	11.800	11.977	11.446	11.800	12.036
R3120N119x	11.722	11.900	12.078	11.543	11.900	12.138
R3120N120x	11.820	12.000	12.180	11.640	12.000	12.240


NO.EC-373-170725

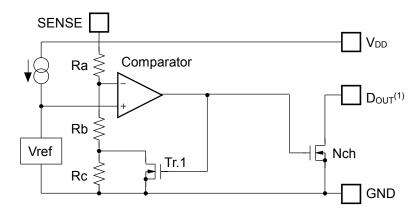
THEORY OF OPERATION

R3120NxxxA (C_D Pin Type)

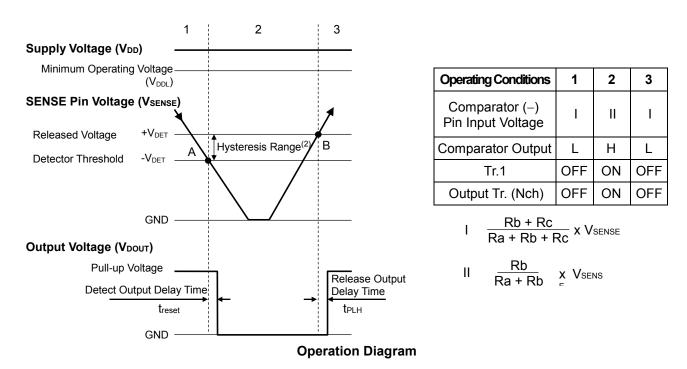
Block Diagram with External Capacitors

Operation Diagram

OPERATING CONDITIONS


- 1. The output voltage is equal to the pull-up voltage.
- 2. At A point, Vref ≥ V_{DD} x (Rb+Rc) / (Ra+Rb+Rc) is true. So, the comparator output voltage will be reversed from "L" to "H". As a result, the output voltage will be "L".
- 3. If the supply voltage remains lower than the minimum operating voltage, the output voltage will be undefined.
- 4. The "L" voltage is output.
- 5. At B point, Vref ≤ V_{DD} x Rb / (Ra+Rb) is true. So, the comparator output voltage will be reversed from "H" to "L". As a result, output voltage will be equal to the pull-up voltage.

 $^{^{(1)}}$ The D_{OUT} pin should be pulled-up to an external voltage level.


⁽²⁾ Hysteresis is a voltage differential between the released voltage and the detector threshold.

NO.EC-373-170725

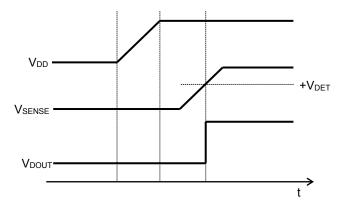
R3120NxxxE (SENSE Pin Type)

Block Diagram with External Capacitors

OPERATING CONDITIONS

- 1. The SENSE pin voltage is higher than the detector threshold; the output voltage is equal to the pull-up voltage.
- 2. At A point, Vref ≥ V_{SENSE} x (Rb+Rc) / (Ra+Rb+Rc) is true. So, the comparator output voltage will be reversed from "L" to "H". As a result, the output voltage will be "L". If the supply voltage remains higher than the minimum operating voltage, the output voltage will stay in "L".
- 3. At B point, Vref ≤ V_{SENSE} x Rb / (Ra+Rb) is true. So, the comparator output voltage will be reversed from "H" to "L". As a result, output voltage will be equal to the pull-up voltage.

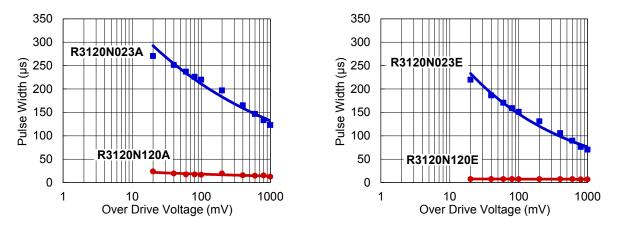
⁽¹⁾ The D_{OUT} pin should be pulled-up to an external voltage level.


⁽²⁾ Hysteresis is a voltage differential between the released voltage and the detector threshold.

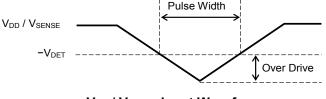
NO.EC-373-170725

POWER SEQUENCE

The R3120NxxxE can supervise the voltage of the SENSE pin. Regarding the power-on sequence, the SENSE pin must be powered on after the power-on to the V_{DD} pin, as shown below.

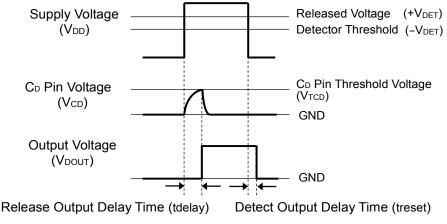

If the SENSE pin voltage is equal or more than the released voltage (+ V_{DET}), D_{OUT} pin becomes "H". Besides, a voltage beyond V_{DD} pin is also acceptable to SENSE pin.




Power-On Timing Diagram

GLITCH DETECTION by VDD, SENSE PINS

The following graphs are the released conditions when a pulse voltage less than or equal to the detector threshold ($-V_{DET}$) is applied to V_{DD} (R3120NxxxA) / V_{SENSE} (R3120NxxxE) pin during the release operation. This graph indicates the maximum pulse condition. If a pulse increased in width and voltage is applied to V_{DD} (R3120NxxxA) / V_{SENSE} (R3120NxXA) / V_{SEN} (R3120NxXA) / V_{SEN} (R3120NxXA) / V_{SEN} (R3120NXXA) / V_{SEN} (R3120NXA) / V_{SEN} (R3120NXXA) / V_{SEN} (R3120NXXA) / V_{SEN} (R3120NXXA) / V_{SEN} (R3120NXXA) / $V_{$

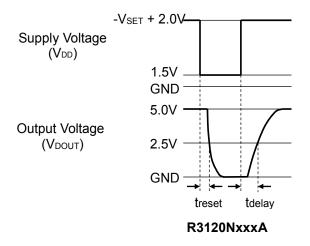

V_{DD} / V_{SENSE} Input Waveform

NO.EC-373-170725

TIMING CHART

When the operating voltage higher than the released voltage is applied to V_{DD} pin, charge to an external capacitor starts, then C_D pin voltage (V_{CD}) increases. The output voltage maintains the released output until V_{CD} reaches the threshold voltage of the release output delay pin (V_{TCD}). And when V_{CD} is over V_{TCD} , the output voltage is inverted from the detected output to the released output. That is, the charged external capacitor starts discharging.

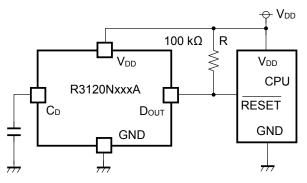
When the operating voltage lower than the detector threshold is applied to V_{DD} pin, the detect output delay time, which is the time until the output voltage is inverted from "H" to "L", remains constant independent of the external capacitor.

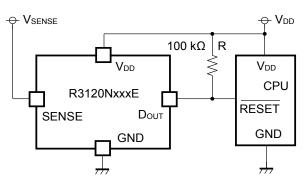


Delay Timing Diagram

RELEASE OUTPUT DELAY TIME (tdelay)

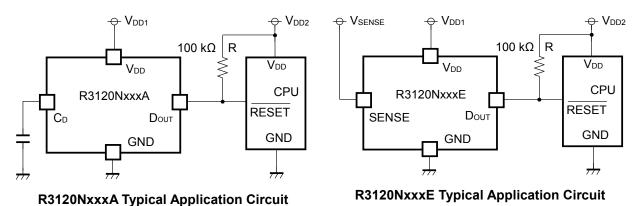
Release Output Delay Time (tdelay) indicates the time between the instance when V_{DD} shift from "1.5 V" to " $-V_{SET}$ + 2.0 V" by the application of a pulse voltage and the instance when the output voltage reaches 2.5 V after pulled up the output pin (D_{OUT}) to 5.0 V with a resistor of 100 k Ω .


This is given by the expression tdelay (s) = 8.5 x 10^6 x C_D (F), where C_D (F) represents capacitance of the external capacitor.


APPLICATION INFORMATION

TYPICAL APPLICATION CIRCUITS

When using a shared input voltage between R3120N and CPU

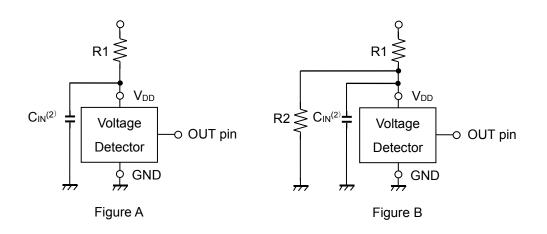


R3120NxxxA Typical Application Circuit

R3120NxxxE Typical Application Circuit

When using different input voltages between R3120N and CPU

NO.EC-373-170725

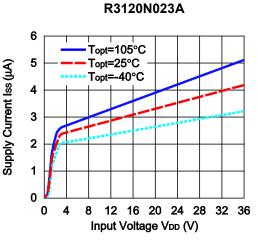

TECHNICAL NOTES

When connecting resistors to the device's input pin

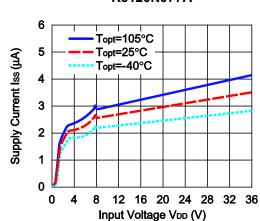
When connecting a resistor (R1) to an input of this device, the input voltage decreases by [Device's Consumption Current] x [Resistance Value] only. And, the cross conduction current⁽¹⁾, which occurs when changing from the detecting state to the release state, is decreased the input voltage by [Cross Conduction Current] x [Resistance Value] only. And then, this device will enter the re-detecting state if the input voltage reduction is larger than the difference between the detector voltage and the released voltage.

When the input resistance value is large and the VDD is gone up at mildly in the vicinity of the released voltage, repeating the above operation may result in the occurrence of output.

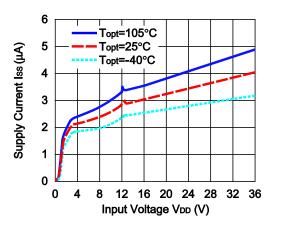
As shown in Figure A/B, set R1 to become $100k\Omega$ or less as a guide, and connect $C_{IN}^{(2)}$ of 0.1μ F and more to between the input pin and GND. Besides, make evaluations including temperature properties under the actual usage condition, with using the evaluation board like this way. As result, make sure that the cross conduction current has no problem.

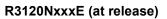

⁽¹⁾ In the CMOS output type, a charging current for OUT pin is included.

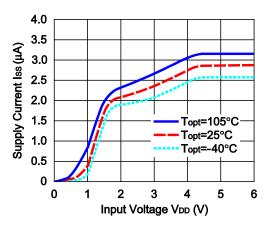
⁽²⁾ Note the bias dependence of capacitors.

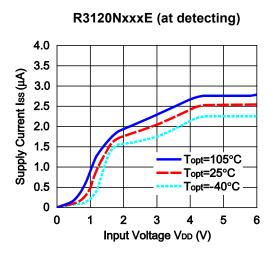

TYPICAL CHARACTERISTICS

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

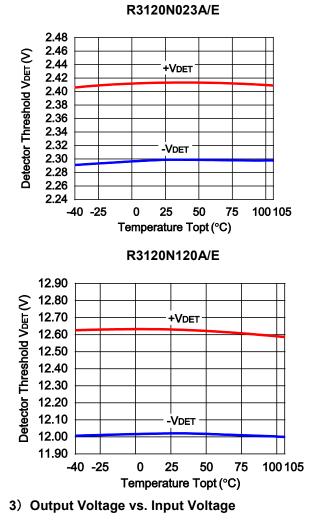

1) Supply Current vs. Input Voltage



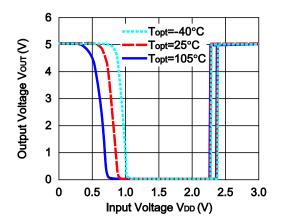


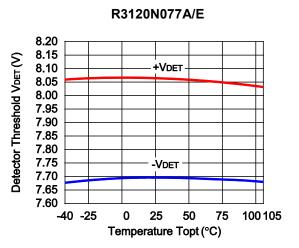


R3120N120A

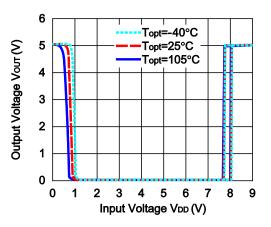


R3120N077A

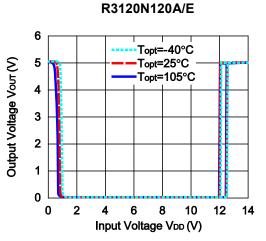

RICOH

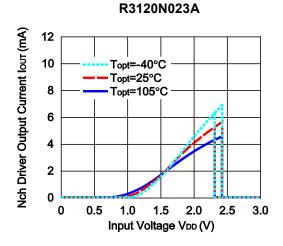

NO.EC-373-170725

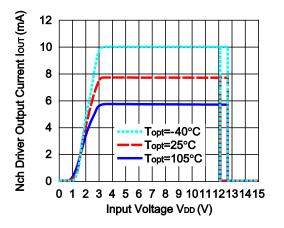
2) Detector Threshold vs. Temperature

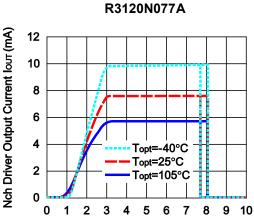


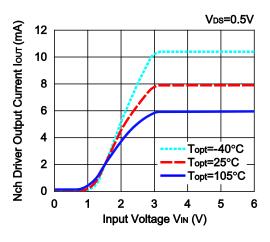
R3120N023A/E

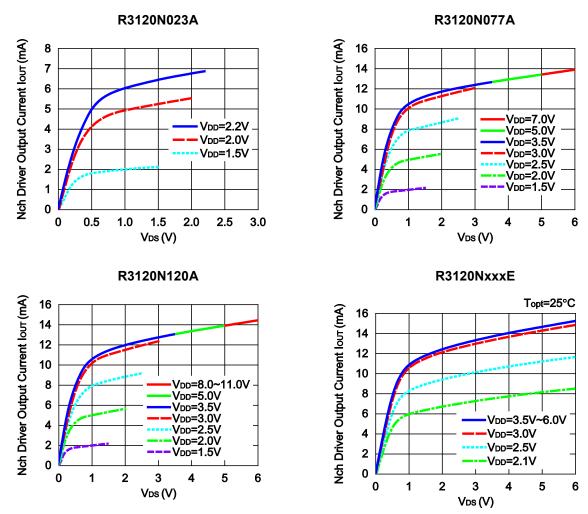



R3120N077A/E

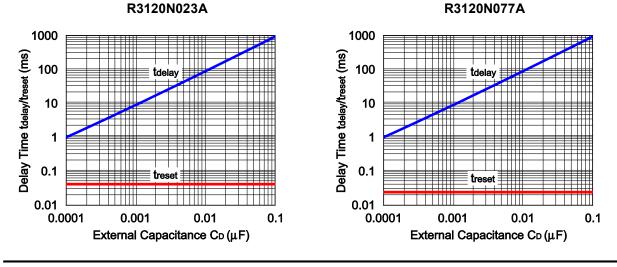

NO.EC-373-170725





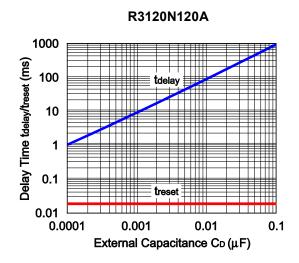


Input Voltage VDD (V)

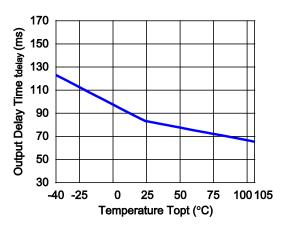


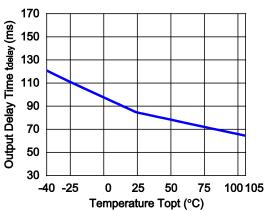
NO.EC-373-170725

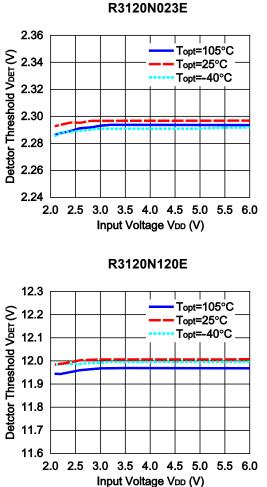
5) Nch. Driver Output Current vs. V_{DS}



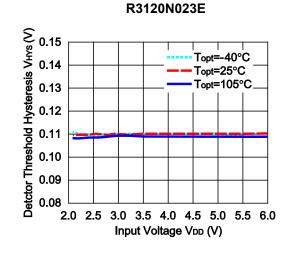
RICOH


NO.EC-373-170725

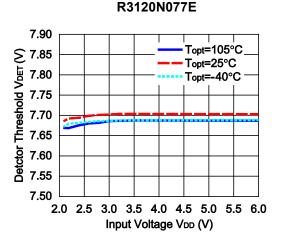


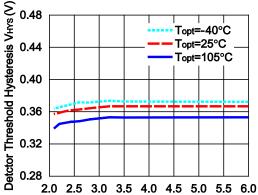


R3120N077A

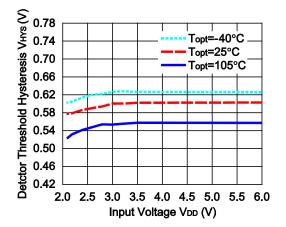


NO.EC-373-170725

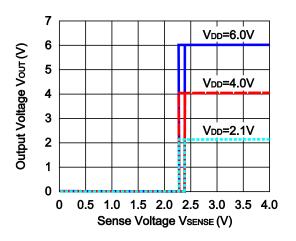

8) Detector Threshold vs. Input Voltage

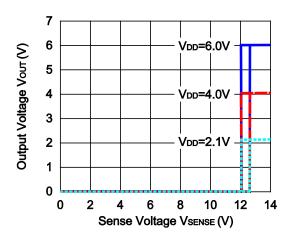


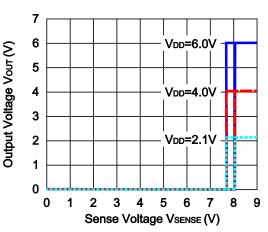
9) Hysteresis Range vs. Input Voltage


Input Voltage VDD (V)

RICOH


NO.EC-373-170725




R3120N023E

R3120N077E

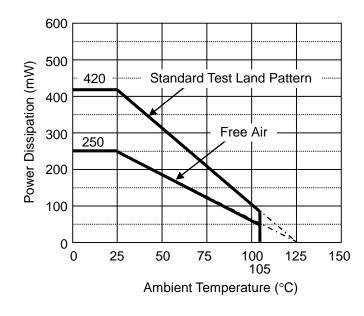
RICOH

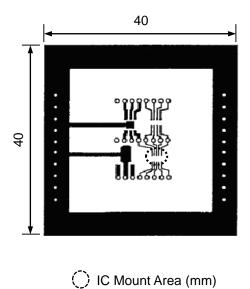
POWER DISSIPATION

SOT-23-5

Ver. A

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

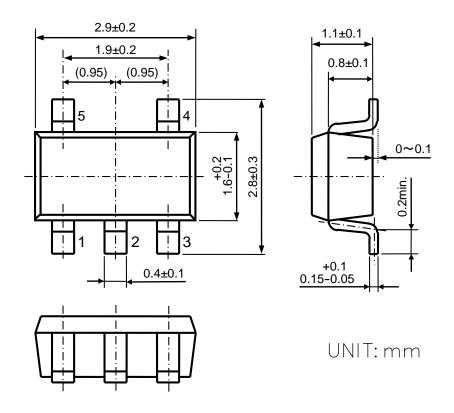

Measurement Conditions


	Standard Test Land Pattern
Environment Mounting on Board (Wind Velocity = 0 m/s)	
Board Material Glass Cloth Epoxy Plastic (Double-sided Board)	
Board Dimensions 40 mm × 40 mm × 1.6 mm	
Copper Ratio	Top Side: Approx. 50% Bottom Side: Approx. 50%
Through-holes	φ 0.5 mm × 44 pcs

Measurement Result

(Ta = 25°C, Tjmax = 125°C)

	Standard Test Land Pattern	Free Air
Power Dissipation	420 mW	250 mW
Thermal Resistance	θja = (125 - 25°C) / 0.42 W = 238°C/W	400°C/W



Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

SOT-23-5

Ver. A

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products in this document are designed for automotive applications. However, when using the products for automotive applications, please make sure to contact Ricoh sales representative in advance due to confirming the quality level.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
- 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

https://www.e-devices.ricoh.co.jp/en/

Sales & Support Offices

Ricoh Electronic Devices Co., Ltd. Shin-Yokohama Office (International Sales) 2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan Phone: +81-50-3814-7687 Fax: +81-45-474-0074

Ricoh Americas Holdings, Inc. av. Suite 200 Campbell, CA 95008, U.S.A. Phone: +1-408-610-3105

Ricoh Europe (Netherlands) B.V. Semiconductor Support Centre Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands Phone: +31-20-5474-309

Ricoh International B.V. - German Branch Semiconductor Sales and Support Centre Oberrather Strasse 6, 40472 Düsseldorf, Germany Phone: +49-211-6546-0

Ricoh Electronic Devices Korea Co., Ltd. 3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713

Ricoh Electronic Devices Shanghai Co., Ltd. Room 403, No.2 Building, No.690 Bibo Road, Pu Dong People's Republic of China Phone: +86-21-5027-3200 Fax: +86-21-5027-3299 hanghai 201203,

Ricoh Electronic Devices Shanghai Co., Ltd.

Shenzhen Branch 1205, Block D(Jinlong Building), Kingkey 100, Hongbao Road, Luohu District, Shenzhen, China Phone: +86-755-8348-7600 Ext 225

Ricoh Electronic Devices Co., Ltd.

 Taipei office

 Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)

 Phone: +886-2-2313-1621/1622

 Fax: +886-2-2313-1621/1622