1.2 A, 30 V Step-Down DC/DC Converter

No. EA-269-200624

OUTLINE

The R1245x is a CMOS-based Step-down DC/DC converter with internal N-channel high side Tr. The ON resistance of the built-in high-side transistor is 0.35Ω and the R1245x can provide the maximum 1.2 A output current. Each of the ICs consists of an oscillator, a PWM control circuit, a voltage reference unit, an error amplifier, a phase compensation circuit, a slope compensation circuit, a soft-start circuit, protection circuits, an internal voltage regulator, and a switch for bootstrap circuit. The ICs can make up a step-down DC/DC converter with an inductor, resistors, a diode, and capacitors.
The R1245x is a current mode operating type DC/DC converter without an external current sense resistor, and realizes fast response and high efficiency. As an output capacitor, a ceramic type capacitor can be used with the R1245x. The options of the internal oscillator frequency are preset at 330 kHz for version A and $\mathrm{B}, 500$ kHz for version C and D, 1000 kHz for version E and F, 2400 kHz for version G and H .

As for protection, an Lx peak current limit circuit cycle by cycle, a thermal shutdown function and an under voltage lockout (UVLO) function are built in. Furthermore, there are two types for short protection, for A/C/E/G version, a latch protection function which makes the output latch off if the output voltage keeps lower than the set output voltage for a certain time after detecting current limit is built in, for B/D/F/H version, a fold-back protection function which changes the oscillator frequency slower after detecting short circuit or equivalent. As for the packages of the R1245x, HSOP-8E, DFN(PLP)2020-8, SOT23-6W are available.

FEATURES

- Operating Voltage...$~ 4.5 ~ V ~ t o ~ 30 ~ V ~$
- Internal N-channel MOSFET Driver Typ. Ron $=0.35 \Omega$
- Adjustable Output Voltage with External Resistor 0.8 V or more
- Feedback Voltage and Tolerance $0.8 \mathrm{~V} \pm 1.0 \%$
- Peak Current Limit.. Typ. 2.0 A
- UVLO Function Released Voltage Typ. 4.0 V
 1000 kHz (Ver. E/F), 2400 kHz (Ver. G/H)
- Fold-back Protected Frequency............................. 170 kHz (Ver. B/D), 250 kHz (Ver. F), 400 kHz (Ver. H)
- Latch Protection Delay Time Typ. 4 ms (Ver. A/C/E/G)
- Ceramic Capacitors Recommended for Input and Output.
- Stand-by Current... Typ. $0 \mu \mathrm{~A}$
- Packages ..6T-6W, DFN(PLP)2020-8, HSOP-8E

R1245x

No. EA-269-200624

APPLICATIONS

- Digital Home Appliances: Digital TVs, DVD Players
- Office Equipment: Printers, Faxes
- 5V PSU or 2-cell or more Li-ion Battery Powered Communication Equipment, Cameras, VCRs, Camcorders
- High Voltage Battery-powered Equipment

SELECTION GUIDE

In the R1245x, the package, type of short protection (Latch or Fold-back), and the oscillator frequency can be selected with the user's request.

Selection Guide

Product code	Package	Quantity per Reel	Pb Free	Halogen Free
R1245S003*-E2-FE	HSOP-8E	$1,000 \mathrm{pcs}$	Yes	Yes
R1245K003*-TR	DFN(PLP)2020-8	$5,000 \mathrm{pcs}$	Yes	Yes
R1245N001*-TR-FE	SOT-23-6W	$3,000 \mathrm{pcs}$	Yes	Yes

*: Designation of the oscillator frequency and the protection function option.

Symbol	Oscillator Frequency	Latch Protection	Fold-back Protection
A	330 kHz	\checkmark	
B	330 kHz		\checkmark
C	500 kHz	\checkmark	
D	500 kHz		\checkmark
E	1000 kHz	\checkmark	
F	1000 kHz		\checkmark
G	2400 kHz	\checkmark	\checkmark
H	2400 kHz		

BLOCK DIAGRAM

R1245x Block Diagram
*1

Version	Oscillator Frequency	Short Protection Type
A	330 kHz	330 kHz
B	330 kHz	330 kHz
C	500 kHz	500 kHz
D	500 kHz	500 kHz
E	1000 kHz	1000 kHz
F	1000 kHz	1000 kHz
G	2400 kHz	2400 kHz
H	2400 kHz	2400 kHz

No. EA-269-200624

PIN DESCRIPTIONS

* Connect the backside heat radiation tub to GND or same as GND level (recommendation). The tub is connected to the GND pin.

R1245S Pin Description

Pin No.	Symbol	Description
1	Lx	Lx Switching Pin
2	VIN	Power Supply Pin
3	CE	Chip Enable Pin, Active with "H"
4	TEST	TEST pin (must be open for user side.)
5	GND	Ground Pin
6	FB	Feedback Pin
7	NC	No connection
8	BST	Bootstrap Pin

* Connect the backside heat radiation tub to GND or same as GND level (recommendation). The tub is connected to the GND pin.

R1245K Pin Description

Pin No.	Symbol	Description
1	Lx	Lx Switching Pin
2	VIN	Power Supply Pin
3	VIN	Power Supply Pin
4	CE	Chip Enable Pin, Active with "H"
5	GND	Ground Pin
6	FB	Feedback Pin
7	TEST	Test Pin (must be open for user side.)
8	BST	Bootstrap Pin

* Connect the backside heat radiation tub to GND or same as GND level (recommendation). The tub is connected to the GND pin.

R1245N Pin Description

Pin No.	Symbol	Description
1	BST	Bootstrap Pin
2	GND	Ground Pin
3	FB	Feedback Pin
4	CE	Chip Enable Pin, Active with "H"
5	VIN	Power Supply Pin
6	Lx	Lx Switching Pin

No. EA-269-200624

INTERNAL EQUIVALENT CIRCUIT FOR EACH PIN

<Lx pin>

<TEST pin>

ABSOLUTE MAXIMUM RATINGS

Absolute	ximum Rat				(GND $=0 \mathrm{~V}$)
Symbol	Item			Rating	Unit
VIN	Input Voltage			-0.3 V to 32 V	V
$V_{\text {BST }}$	BST Pin Voltage			V Lx -0.3 V to V Lx +6 V	V
VLX	Lx Pin Voltage			-0.3 V to $\mathrm{V}_{\mathrm{IN}}+0.3$	V
Vce	CE Pin Input Voltage			$-0.3 \vee$ to $\mathrm{V}_{\text {IN }}+0.3$	V
V_{FB}	Feedback Pin Voltage			-0.3 V to 6 V	V
PD	Power Dissipation*	HSOP-8E	Ultra High Wattage Land Pattern	2900	mW
		DFN(PLP)2020-8	Standard Land Pattern	880	
		SOT-23-6W	Standard Land Pattern	430	
Tj	Junction Temperature Range			-40 to 125	${ }^{\circ} \mathrm{C}$
Tstg	Storage Temperature Range			-55 to 125	${ }^{\circ} \mathrm{C}$

* Refer to POWER DISSIPATION for detailed information.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS

Recommended Operating Conditions

Symbol	Item	Rating	Unit
$\mathrm{V}_{\text {IN }}$	Operating Input Voltage	4.5 to 30	V
Ta	Operating Temperature Range	-40 to 105	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

No. EA-269-200624

ELECTRICAL CHARACTERISTICS

Electrical Characteristics
(Unless otherwise noted, $\mathrm{V}_{\mathbb{I N}}=12 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Symbol	Item	Conditions		Min.	Typ.	Max.	Unit
1 IN	Consumption Current	$\mathrm{V}_{\mathrm{IN}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=1.0 \mathrm{~V}$			0.5	1.0	mA
V UvLO1	UVLO Detect Voltage	Specified VIn falling edge		3.6	$\begin{gathered} \hline \text { VuvLo2 } \\ -0.2 \end{gathered}$	$\begin{gathered} \hline \text { VuvLo2 } \\ -0.1 \end{gathered}$	V
VuvLO2	UVLO Released Voltage	Specified rising edge		3.8	4.0	4.2	V
$\mathrm{V}_{\text {FB }}$	VFB Voltage Tolerance			0.792	0.800	0.808	V
$\Delta \mathrm{V}_{\mathrm{FB}} / \Delta \mathrm{Ta}$	VFB Voltage Temperature Coefficient	$-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 105^{\circ} \mathrm{C}$			± 100		$\begin{gathered} \mathrm{ppm} / \\ { }^{\circ} \mathrm{C} \end{gathered}$
fosc	Oscillator Frequency	Ver. A/B		300	330	360	
		Ver. C/D		450	500	550	
		Ver. E/F		900	1000	1100	
		Ver. G/H		2200	2400	2600	
$\mathrm{f}_{\text {FLB }}$	Fold back Frequency	$\mathrm{V}_{\mathrm{FB}}<0.56 \mathrm{~V}$	Ver. B/D		170		kHz
			Ver. F		250		
			Ver. H		400		
Maxduty	Oscillator Maximum Duty Cycle	Ver. A/B/C/D		92			\%
		Ver. E/F		88			
		Ver. G/H		76			
tstart	Soft-start Time	$\mathrm{V}_{\mathrm{FB}}=0.72 \mathrm{~V}$			1		ms
tbly	Delay Time for Latch Protection	Ver. A/C/E/G			4		ms
Rıxh	Lx High Side Switch ON Resistance	$\mathrm{V}_{\mathrm{BST}}-\mathrm{V}_{\mathrm{LX}}=4.5 \mathrm{~V}$			0.35		Ω
ILXhoff	Lx High Side Switch Leakage Current	$\mathrm{V}_{\text {IN }}=30 \mathrm{~V}, \mathrm{~V}_{\text {ce }}=0 \mathrm{~V}$			0	5	$\mu \mathrm{A}$
ILImLxh	Lx High Side Switch Limited Current	$\mathrm{V}_{\text {bSt }}-\mathrm{V}_{\text {LX }}=4.5 \mathrm{~V}$		1.5	2.0	2.7	A
$V_{\text {cel }}$	CE "L" Input Voltage	V IN $=30 \mathrm{~V}$				0.3	V
$\mathrm{V}_{\text {ceh }}$	CE "H" Input Voltage	$\mathrm{V}_{\text {IN }}=30 \mathrm{~V}$		1.6			V
Ifb	VFB Input Current	$\mathrm{V}_{\mathrm{IN}}=30.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=1.0 \mathrm{~V}$		-1.0		1.0	$\mu \mathrm{A}$
Icel	CE "L" Input Current	$\mathrm{V}_{\text {IN }}=30 \mathrm{~V}, \mathrm{~V}_{\text {ce }}=0 \mathrm{~V}$		-1.0		1.0	$\mu \mathrm{A}$
Iceh	CE "H" Input Current	$\mathrm{V}_{\text {IN }}=30 \mathrm{~V}, \mathrm{~V}_{\text {ce }}=30 \mathrm{~V}$		-1.0		1.0	$\mu \mathrm{A}$
TTSD	Thermal Shutdown Detect Temperature	Hysteresis $30^{\circ} \mathrm{C}$			160		${ }^{\circ} \mathrm{C}$
Istandby	Standby Current	$\mathrm{V}_{\text {IN }}=30 \mathrm{~V}$			0	5	$\mu \mathrm{A}$

OPERATING DESCRIPTIONS

OPERATION OF THE BUCK CONVERTER AND THE OUTPUT CURRENT

The DC/DC converter charges energy in the inductor when the switch turns on, and discharges the energy from the inductor when the switch turns off and controls with less energy loss, so that a lower output voltage than the input voltage is obtained. Refer to the following figures.

Basic Circuit

Current flowing through the Inductor

Step 1: The switch turns on and current IL (= i1) flows, and energy is charged into Cout. At this moment, IL increases from ILmin $(=0)$ to reach ILmax in proportion to the on-time period (ton) of the switch.

Step 2: When the switch turns off, the diode turns on in order to maintain IL at ILmax, and current IL (= i2) flows.

Step 3: IL (= i2) decreases gradually and reaches IL = ILmin = 0 after a time period of topen, and the diode turns off. This case is called as discontinuous mode. If the output current becomes large, next switching cycle starts before IL becomes 0 and the diode turns off. In this case, IL value increases from ILmin (>0), and this case is called continuous mode.

In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with the oscillator frequency (fosc) being maintained constant.

R1245x

No. EA-269-200624

TYPICAL APPLICATION CIRCUIT

R1245x00xA/B Typical Application Circuit, $330 \mathrm{kHz}, \mathrm{V}_{\text {out }}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=24 \mathrm{~V}$

R1245x00xC/D Typical Application Circuit, $500 \mathrm{kHz}, \mathrm{V}_{\text {out }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=24 \mathrm{~V}$

* TEST pin must be open.

R1245x00xE/F Typical Application Circuit, $1000 \mathrm{kHz}, \mathrm{V}_{\text {out }}=3.3 \mathrm{~V} \mathrm{~V}_{\mathrm{IN}}=12 \mathrm{~V}$

R1245x00xG/H Typical Application Circuit, $2400 \mathrm{kHz}, \mathrm{V}_{\text {out }}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=12 \mathrm{~V}$

* TEST pin must be open.

R1245x

No. EA-269-200624

OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS

The relation between the output current and external components is as follows:
When the switch of $L x$ turns on:
(Wherein, the peak to peak value of the ripple current is described as I_{RP}, the ON resistance of the switch is described as $R_{\text {onh }}$, and the diode forward voltage as V_{F}, and the DC resistance of the inductor is described as R_{L}, and on time of the switch is described as ton)
$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}+\left(\mathrm{R}_{\text {ONH }}+\mathrm{R}_{\mathrm{L}}\right) \times$ IoUT $+\mathrm{L} \times \mathrm{I}_{\mathrm{RP}} /$ ton
Equation 1

When the switch turns off (the diode turns on) as toff:
$\mathrm{L} \times \mathrm{I}_{\mathrm{RP}} /$ toff $=\mathrm{V}_{\mathrm{F}}+\mathrm{V}_{\text {out }}+\mathrm{R}_{\mathrm{L}} \times$ Iout
Equation 2

Put Equation 2 to Equation 1 and solve for ON duty of the switch, ton $/(t o f f+t o n)=$ Don,
$\mathrm{D}_{\text {ON }}=\left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{F}}+\mathrm{R}_{\mathrm{L}} \times\right.$ IOUT $) /\left(\mathrm{V}_{\text {IN }}+\mathrm{V}_{\mathrm{F}}-\mathrm{R}_{\text {ONH }} \times\right.$ IOUT $)$
Equation 3

Ripple Current is as follows:
$I_{\text {RP }}=\left(V_{\text {IN }}-V_{\text {OUT }}-R_{\text {ONH }} \times I_{\text {OUT }}-R_{L} \times I_{\text {OUT }}\right) \times$ Don $/$ fosc $/ L$
Equation 4
wherein, peak current that flows through L , and the peak current ILmax is as follows:

ILmax $=$ Iout $+I_{\text {RP }} / 2$
Equation 5

As for the valley current ILmin,
ILmin $=$ Iout $-I_{\text {RP }} / 2$
Equation 6

If ILmin <0, the step-down DC/DC converter operation becomes current discontinuous mode. Therefore the current condition of the current discontinuous mode, the next formula is true.

Iout < IRP / 2
Equation 7

Consider ILmax and ILmin, conditions of input and output and select external components.
*The above explanation is based on the calculation in an ideal case in continuous mode.

Ripple Current and Lx Current Limit

The ripple current of the inductor may change according to the various reasons. In the R1245x, as an Lx current limit, Lx peak current limit is used. Therefore the upper limit of the inductor current is fixed.
The peak current limit is not the average current of the inductor (output current). If the ripple current is large, peak current becomes also large. The characteristic is used for the fold-back current limit of version B/D/F/H. In other words, the peak current limit is maintained and the switching frequency is reduced, as a result, the average current of the inductor is reduced. To release this condition, at 170 kHz for version B / D, at 250 kHz for version F , at 400 kHz for version H must not be beyond the peak current limit. In the figure1, the sequence of the Lx current limit function is described.

Figure 1. Lx Limit function sequence

No. EA-269-200624

Latch Protection Function for Version A/C/E/G

The latch function works after detecting current limit and if the output voltage becomes low for a certain time, the output is latched off. Refer to the TECHNICAL NOTES.

Fold-back Protection Function for Version B/D/F/H

If FB voltage becomes lower than approximately 0.56 V , the fold-back protection function limits the oscillator frequency to typically 170 kHz for version B/D, typically 250 kHz fir version F, typically 400 kHz for version H . By reducing frequency, the ripple current increases. The R1245x has the peak current limit function, therefore as in the equation 8 , the Lx average current decreases by the increase of the ripple current.
lout $=$ ILmax + IRP $/ 2$.
Equation 8

If FB voltage becomes less than 0.56 V , the oscillator frequency is reduced. At heavy load, if the R1245x becomes into the fold-back protection mode, the situation may not be released by increase the ripple current. In terms of other notes on this protection function, refer to the TECHNICAL NOTES.

MAXIMUM OUTPUT CURRENT

The output current of the R1245x is limit by the power dissipation P_{D} of the package and the maximum specification 1.2 A. The loss of the IC includes the switching loss, and it is difficult to estimate. To estimate the maximum output, using the efficiency data is one method.
By using the efficiency data, the loss including the external components can be calculated with the equation,
(100 / efficiency (\%) - 1) x (Vout (V) x lout (A)). From this equation, by reducing the loss of external components, the loss of the IC can be estimated. The main loss of the external components is composed by the rectifier diode and DCR of the inductor. Supposed that the forward voltage of the diode is described as V_{F}, the loss of the diode can be described as follows:

The loss by the DCR of the inductor can be calculated by the formula $\operatorname{DCR}(\Omega) \times \operatorname{lout}^{2}(A)$.
Thus,
The loss of the IC $=(100 /$ efficiency $(\%)-1) \times\left(\operatorname{Vout}(\mathrm{V}) \times \operatorname{lout}(\mathrm{A})-\left(\mathrm{V}\right.\right.$ In $(\mathrm{V})-\mathrm{Ron}_{\text {on }}(\Omega) \times$ Iout $(\mathrm{A})-\mathrm{V}_{\text {out }}(\mathrm{V})-$ $\left.\mathrm{V}_{\mathrm{F}}(\mathrm{V})\right) / \mathrm{V}_{\text {IN }}(\mathrm{V}) \times \mathrm{V}_{\mathrm{F}}(\mathrm{V}) \times \operatorname{lout}(\mathrm{A})-\operatorname{DCR}(\Omega) \times \operatorname{lout}^{2}(\mathrm{~A})$

The efficiency of the R 1245 x at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=3.3 \mathrm{~V}$, Iout $=600 \mathrm{~mA}$ is approximately 89.5% for version A / B (Oscillator frequency: 330 kHz). Supposed that the On resistance of the internal driver is 0.35Ω, the $D C R$ of the inductor is $65 \mathrm{~m} \Omega$, the V_{F} of the rectifier diode is 0.3 V and applied to the formula above,
The loss of the $I C=(100 \% / 89.5 \%-1) \times(3.3 \vee \times 0.6 A)-(12 \vee-0.35 \Omega \times 0.6 A-3.3 \vee-0.3 V) / 12 V \times 0.3$ $\mathrm{V} \times 0.6 \mathrm{~A}-0.065 \Omega \times 0.6^{2} \mathrm{~A}=86 \mathrm{~mW}$
The power dissipation P_{d} of the package is specified at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ based on the Tjmax $=125^{\circ} \mathrm{C}$. Thus the thermal resistance of the package $\theta \mathrm{ja}=\left(\operatorname{Tjmax}\left({ }^{\circ} \mathrm{C}\right)-\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)\right) / \mathrm{PD}_{\mathrm{D}}(\mathrm{W})$, therefore the thermal resistance of the each available package is as follows:
HSOP-8E: $\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) / 2.9 \mathrm{~W}=34.5^{\circ} \mathrm{C} / \mathrm{W}$
DFN(PLP)2020-8: $\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) / 0.88 \mathrm{~W}=114^{\circ} \mathrm{C} / \mathrm{W}$
SOT-23-6W: $\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) / 0.43 \mathrm{~W}=233^{\circ} \mathrm{C} / \mathrm{W}$
Due to the loss of the IC is 86 mW for this example, therefore Tj increase of the each package is as follows: HSOP-8E: $34.5^{\circ} \mathrm{C} / \mathrm{W} \times 86 \mathrm{~mW}=2.96^{\circ} \mathrm{C}$
DFN(PLP)2020-8: $114^{\circ} \mathrm{C} / \mathrm{W} \times 86 \mathrm{~mW}=9.80^{\circ} \mathrm{C}$
SOT-23-6W: $233^{\circ} \mathrm{C} / \mathrm{W} \times 86 \mathrm{~mW}=20.0^{\circ} \mathrm{C}$

For all the packages, even if the ambient temperature is at $105^{\circ} \mathrm{C}, \mathrm{Tj}$ can be suppressed less than $125^{\circ} \mathrm{C}$. By the increase of the temperature, on resistance and switching loss increases, therefore, temperature margin is not enough, measure the efficiency at the actual maximum temperature and recalculation is necessary.

At the same condition, if the preset frequency is 2400 kHz , the efficiency will be down to approximately 81%. The result of the loss calculation is 310 mW , therefore the Tj increase of each package is,

HSOP-8E: $34.5^{\circ} \mathrm{C} / \mathrm{W} \times 310 \mathrm{~mW}=11^{\circ} \mathrm{C}$
DFN(PLP)2020-8: $114^{\circ} \mathrm{C} / \mathrm{W} \times 310 \mathrm{~mW}=35^{\circ} \mathrm{C}$
SOT-23-6W: $233^{\circ} \mathrm{C} / \mathrm{W} \times 310 \mathrm{~mW}=72^{\circ} \mathrm{C}$

R1245x

No. EA-269-200624

HSOP-8E can be used at the ambient temperature $105^{\circ} \mathrm{C}$, DFN(PLP)2020-8 can be used at the ambient temperature up to $90^{\circ} \mathrm{C}$, SOT-23-6W can be used at the ambient temperature up to $53^{\circ} \mathrm{C}$. Note that the result is different by the frequency.
The next graphs are the output current and estimated ambient temperature limit.
Maximum Output Current

$$
\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {out }}=3.3 \mathrm{~V}, \text { fosc }=330 \mathrm{kHz}
$$

Maximum Output Current
$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {out }}=3.3 \mathrm{~V}$, fosc $=2400 \mathrm{kHz}$

TECHNICAL NOTES

- External components must be connected as close as possible to the ICs and make wiring as short as possible. Especially, the capacitor connected in between VIN pin and GND pin must be wiring the shortest. If their impedance is high, internal voltage of the IC may shift by the switching current, and the operating may be unstable. Make the power supply and GND lines sufficient. In the wiring of the power supply, GND, LX, VOUT and the inductor, large current by switching may flow. To avoid the bad influence, the wiring between the resistance, "Rup" for setting the output voltage and loading, and the wiring between the inductor and loading must be separated.
- The ceramic capacitors have low ESR (Equivalent Series Resistance) and recommended for the ICs. The recommendation of CIN capacitor between VIN and GND is $10 \mu \mathrm{~F}$ or more for $\mathrm{A} / \mathrm{B} / \mathrm{C} / \mathrm{D}$ version, $4.7 \mu \mathrm{~F}$ or more for E/F version, and $2.2 \mu \mathrm{~F}$ or more for G / H version. Verify the bias dependence and the temperature characteristics of the ceramic capacitors. Recommendation conditions are written based on the case which the recommendation parts are used with the R1245x.
- The R1245x is designed with the recommendation inductance value and ceramic capacitor value and phase compensation has been made. If the inductance value is large, due to the lack of current sensing amount of the current mode, unstable operation may result. On the contrary, if the inductance value is small, the current sensing amount may increase too much, low frequency oscillation may occur when the on duty ratio is beyond 50%. Not only that, if the inductance value is small, according to the increase of the load current, the peak current of the switching may increase, as a result, the current may reach the current limit value and the current limit may work.
- As for the diode, use the Schottky diode with small capacitance between terminals. The reference characteristic of the capacitance between terminals is around 100 pF or less at 10 V . If the capacitance between terminals is large, excess switching current may flow and the operation of the IC may be unstable. If the capacitance between terminals of the Scottky diode is beyond 100 pF at 10 V or unknown, verify the load regulation, line regulation, and the load transient response.
- Output voltage can be set by adjustment of the values of R1 and R2. The equation of setting the output voltage is $V_{\text {out }}=V_{F B} \times(R 1+R 2) / R 2$. If the values of $R 1$ and $R 2$ are large, the impedance of $F B$ pin increases, and pickup the noise may result. The recommendation value range of R 2 is approximately between $1.0 \mathrm{k} \Omega$ to $16 \mathrm{k} \Omega$. If the operation may be unstable, reduce the impedance of $F B$ pin.
- For the CE pin, as an ESD protection element, a diode to VIN pin is formed internal of the IC. If CE pin voltage may become higher than VIN pin voltage, to prevent flowing large current from CE pin to VIN pin, connect $10 \mathrm{k} \Omega$ or more resistor between CE and VIN pin.
- Connect the backside heat radiation tub of the DFN(PLP)2020-9/HSOP-8E to the GND. As for multi-layered boards, to make better power dissipation, putting some thermal via on the thermal pad in the land pattern and radiation of the heat to another layer is effective.
- After the soft-start operation, the latch function is enabled for version $A / C / E / G$. The latch protection starts the internal counter when the internal current limit protection circuit detects the current limit. When the internal counter counts up to the latch timer limit, typically 4 ms , the output is latched off. To reset the latch function, make the CE pin "L", or make VIN pin voltage lower than UVLO detector threshold. Then in the case that the output voltage or FB voltage becomes setting voltage within the latch timer preset time, counter is initialized. If the slew rate of the power supply is too slow and after the soft-start time, the output voltage does not reach the set output voltage even if the latch timer preset time is over, the latch function may work unexpectedly.

R1245x

No. EA-269-200624

- After the soft-start operation, fold-back protection function is enabled for version B/D/F/H. The fold-back function will limit the oscillator frequency if the FB pin voltage becomes lower than typically 0.56 V . For B/D version, the oscillator frequency will be reduced typically into 170 kHz , for F version, into 250 kHz , for H version, into 400 kHz .
- If the slew rate of the power supply is too slow, and even after the soft-start time, the output voltage is still less than 70% of the set output voltage, or FB pin voltage is less than typically 0.56 V , then this function may work unexpectedly.
- The performance of power circuit using this IC largely depends on external components. Selection of external components is very important, especially, do not exceed each rating value (voltage/current/power).

Table 1. Recommended Values for Each Output Voltage

R1245x00xA/B: 330 kHz

Vout (V)	0.8 to 1.2	1.2 to 2.5	2.5 to 5.0	$5.0 \leq$
R1 (Rup) (k $)^{\text {) }}$	$=\left(\mathrm{V}_{\text {out }} / 0.8-1\right) \times \mathrm{R} 2$			
R2 ($\mathrm{R}_{\text {BOT }}$) (kת)	16	12	1.20	1.20
$\mathrm{C}_{\text {SPD }}$ (pF)	open	470	2200	1000
Cout ($\mu \mathrm{F}$)	47	47	22	22
$\mathrm{L}(\mu \mathrm{H})$	4.7	10	15	33

R1245x00xC/D: 500 kHz

Vout (V)	0.8 to 1.2	1.2 to 1.5	1.5 to 2.0	2.0 to 5.0	5.0 to 12.0	$12.0 \leq$
R1 (Rup) (k ${ }^{\text {) }}$	$=($ Vout $/ 0.8-1) \times \mathrm{R} 2$					
R2 (Rвот) (k ${ }^{\text {) }}$	16	16	16	1.2	1.2	1.2
$\mathrm{C}_{\text {SPD }}(\mathrm{pF})$	open	100	100	1000	1000	470
Cout ($\mu \mathrm{F}$)	100	100	22	22	22	22
$\mathrm{L}(\mu \mathrm{H})$	4.7	4.7	10	10	15	15

R1245x00xE/F: 1000 kHz

Vout (V)	0.8 to 1.0	1.0 to 1.2	1.2 to 1.5	1.5 to 2.5	2.5 to 5.0	$5.0 \leq$
R1 (Rup) (k ${ }^{\text {) }}$	$=\left(\mathrm{V}_{\text {OUt }} / 0.8-1\right) \times \mathrm{R} 2$					
R2 ($\mathrm{R}_{\text {вот }}$) (k ${ }^{\text {a }}$)	16	16	16	16	1.2	1.2
$\mathrm{C}_{\text {SPD }}(\mathrm{pF})$	open	100	100	100	470	470
Cout ($\mu \mathrm{F}$)	100	100	47	22	10	10
$L(\mu \mathrm{H})$	2.2	2.2	2.2	2.2	4.7	10

R1245x00xG/H: 2400 kHz

Vout (V)	1.2 to 1.8	1.8 to 2.5	2.5 to 5.0	$5.0 \leq$
R1 (Rup) (k ${ }^{\text {) }}$	$=($ Vout $/ 0.8-1) \times \mathrm{R} 2$			
R2 ($\mathrm{R}_{\text {вот }}$) (k))	16	12	1.2	1.2
$\mathrm{C}_{\text {SPD }}(\mathrm{pF})$	100	100	470	470
Cout ($\mu \mathrm{F}$)	10	10	4.7	4.7
$\mathrm{L}(\mu \mathrm{H})$	1.0	1.5	2.2	4.7

*1 Divider Resisters Values and Possible Setting Range of Input/ Output

Vout [V]	$\begin{aligned} & \text { R1 (Rup) } \\ & {[k \Omega]} \end{aligned}$	$\begin{gathered} \text { R2 (Rвот) } \\ {[\mathrm{k} \Omega]} \end{gathered}$	Input Voltage Range [V]			
			Ver. A/B	Ver. C/D	Ver. E/F	Ver. G/H
0.8	0	open	4.5 to 20	4.5 to 13.5	4.5 to 7	-
	0	16				
1	4	16	4.5 to 25.5	4.5 to 17	4.5 to 8.5	-
1.2	8	16	4.5 to 30	4.5 to 20	4.5 to 10	-
	6	12				
1.5	10.5	12	4.5 to 30	4.5 to 25	4.5 to 12.5	4.5 to 5.5
	14	16				
1.8	20	16	4.5 to 30	4.5 to 30	4.5 to 15	4.5 to 6.5
	15	12				
2	24	16	4.5 to 30	4.5 to 30	4.5 to 17	4.5 to 7
	1.8	1.2				
2.5	34	16	4.5 to 30	4.5 to 30	4.5 to 21	4.5 to 9
	25.5	12				
	2.55	1.2				
3.3	3.75	1.2	4.5 to 30	4.5 to 30	4.5 to 27.5	4.5 to 12
5	6.3	1.2	5.5 to 30	5.5 to 30	6 to 30	7 to 18.5
6	7.8	1.2	6.5 to 30	6.5 to 30	7 to 30	8 to 20
9	12.3	1.2	10 to 30	10 to 30	11 to 30	12 to 30
12	16.8	1.2	13 to 30	13 to 30	14 to 30	16 to 30
15	21.3	1.2	16.5 to 30	16.5 to 30	17 to 30	20 to 30
24	34.8	1.2	26.5 to 30	26.5 to 30	27.5 to 30	30

Table 2. Recommended External Components Examples (Considering All the Range)

Symbol	Condition	Value	Parts Name	MFR
$\mathrm{Clin}^{\text {a }}$	$\begin{aligned} & 50 \mathrm{~V} / \mathrm{X} 5 \mathrm{R} \\ & 50 \mathrm{~V} / \mathrm{X} 5 \mathrm{R} \\ & 50 \mathrm{~V} / \mathrm{X} 7 \mathrm{R} \\ & 50 \mathrm{~V} / \mathrm{X} 7 \mathrm{R} \end{aligned}$	$10 \mu \mathrm{~F}$ $10 \mu \mathrm{~F}$ $4.7 \mu \mathrm{~F}$ $2.2 \mu \mathrm{~F}$	UMK325BJ106MM-P CGA6P3X7S1H106K GRM31CR71H475KA12L GRM31CR71H225KA88L	TAIYO YUDEN TDK Murata Murata
Cout	$50 \mathrm{~V} / \mathrm{X} 5 \mathrm{R}$ $50 \mathrm{~V} / \mathrm{X} 5 \mathrm{R}$ $50 \mathrm{~V} / \mathrm{X} 7 \mathrm{R}$ $25 \mathrm{~V} / \mathrm{X} 7 \mathrm{R}$ $10 \mathrm{~V} / \mathrm{X} 7 \mathrm{R}$ $16 \mathrm{~V} / \mathrm{B}$ $10 \mathrm{~V} / \mathrm{X} 7 \mathrm{R}$	$10 \mu \mathrm{~F}$ $10 \mu \mathrm{~F}$ $10 \mu \mathrm{~F}$ $10 \mu \mathrm{~F}$ $22 \mu \mathrm{~F}$ $47 \mu \mathrm{~F}$ $47 \mu \mathrm{~F}$	UMK325BJ106MM-P CGA6P3X7S1H106K KTS500B106M55N0T00 GRM31CR71E106K GRM31CR71A226M GRM32EB31C476KE15 GRM32ER71A476KE15 NOTE: The value of Cout depends on the setting output voltage.	TAIYO YUDEN TDK Nippon Chemi-Con Murata Murata Murata Murata
$\mathrm{C}_{\text {BST }}$	$16 \mathrm{~V} / \mathrm{X} 7 \mathrm{R}$	$0.47 \mu \mathrm{~F}$	EMK212B7474KD-T	TAIYO YUDEN
L	$\begin{gathered} \hline 1.8 \mathrm{~A} \\ 1.65 \mathrm{~A} \\ 1.7 \mathrm{~A} \\ 2.4 \mathrm{~A} \\ 1.9 \mathrm{~A} \\ 2.3 \mathrm{~A} \\ 1.9 \mathrm{~A} \\ 1.9 \mathrm{~A} \\ 1.7 \mathrm{~A} \\ 1.65 \mathrm{~A} \\ 1.8 \mathrm{~A} \\ 1.8 \mathrm{~A} \end{gathered}$	$10 \mu \mathrm{H}$ $4.7 \mu \mathrm{H}$ $4.7 \mu \mathrm{H}$ $4.7 \mu \mathrm{H}$ $10 \mu \mathrm{H}$ $15 \mu \mathrm{H}$ $22 \mu \mathrm{H}$ $33 \mu \mathrm{H}$ $2.2 \mu \mathrm{H}$ $2.2 \mu \mathrm{H}$ $1.5 \mu \mathrm{H}$ $1.0 \mu \mathrm{H}$	SLF6045T-100M1R6-3PF SLF7045T-4R7M2R0-PF NR4018T-4R7M2R0-PF NR6020T4R7N NR6028T100M NR6045T150M NR6045T220M NR8040T330M VLCF4020T-2R2N1R7 NR4012T2R2M NR3015T1R5N NR4010T1R0N	TDK TDK TDK TAIYO YUDEN TDK TAIYO YUDEN TAIYO YUDEN TAIYO YUDEN
D	$\begin{aligned} & 30 \mathrm{~V} / 2.0 \mathrm{~A} \\ & 40 \mathrm{~V} / 2.0 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.37 \mathrm{~V} \\ & 0.55 \mathrm{~V} \end{aligned}$	CMS06 CMS11	TOSHIBA TOSHIBA
Rce	An up diode is formed between the CE pin and the VIN pin as an ESD protection element. If the CE pin may become higher than the voltage of the VIN pin, connect the $10 \mathrm{k} \Omega$ resistance between the CE pin and VIN pin, to prevent a large current from flowing into the VIN pin from the CE pin.			

APPLICATION INFORMATION

TO IMPROVE THE PERFORMANCE

The R1245 can make its performance better, by adding components as shown below.

Cspd: Speed up capacitor

Cspd has two roles, one is to improve the stability, and the other is to improve the transient speed. The transfer function from Vout (-which is made of Cspd and feedback resisters, R1(Rup) and R2(Rbot)) to FB will make a forward bump by low frequency zero and high frequency pole, and improve the stability of feedback loop. Cspd can improve the gain and make the transient speed fast at high frequency.

Figure 2. Transfer function BODE plot from $V_{\text {out }}$ to $F B(R 1=3.75 \mathrm{k} \Omega, R 2=1.2 \mathrm{k} \Omega, \mathrm{Cspd}=470 \mathrm{pF})$

R1245x

No. EA-269-200624

To improve the stability

If the resistance values of the R1 and R2 have to be changed, make the value of R1*Cspd be constant.
(For example, with the $\mathrm{R} 1245 \times 00 \times \mathrm{A} / \mathrm{B}$ and making $\mathrm{V}_{\text {out }}=1.2 \mathrm{~V}$, if $\mathrm{R} 1=0.6 \mathrm{k} \Omega, \mathrm{R} 2=1.2 \mathrm{k} \Omega$ are used, Cspd=4700pF. By making the values of R1 and R2 increase, the impedance of FB pin also increases, as a result, the influence by noise must be cared. To avoid this, recommendation value range of R2 is from $1.0 \mathrm{k} \Omega$ to $16 \mathrm{k} \Omega$. If the operation becomes unstable by increasing the impedance, choose low resistance value.

If Cout and L are necessary to be changed, or unusual voltage setting is necessary, the Cspd value must be adjusted. The instruction of the adjustment is as follows:

1. Without Cspd, measure the output under-shoot amount by load transient response.
2. Further, with using a small value Cspd, measure the output under-shoot amount by load transient response. The appropriate initial value is about $1 / 10$ of the recommendation Cspd value. If Cspd is too small, the under-shoot amount is almost same as the one without Cspd. If the value of Cspd is changed bigger gradually, the under-shoot amount will be less. Supposed that this new good Cspd as Cspd1, and continue to make it bigger, and finally, the under-shoot amount becomes unchanged, at this point, supposed that the maximum Cspd as Cspd2.
3. Select an appropriate value according to the formula, Cspd= $\sqrt{ }($ $C s p d 1 * C s p d 2) . ~$

To improve the transient response speed

If the stability is enough, (for example, in the case that Cout is big enough), make Cspd value bigger. The stability will be same, but the gain at high frequency will be large, and improve the transient response speed. However, if Cspd value is set Cspd2 value or more, the result will not be improved, not only that, due to the high gain at high frequency, compared with the result without Cspd, the stability will be worse.
(1)R1=3.75k $\Omega, R 2=1.2 \mathrm{k} \Omega$, Cspd: none, $\mathrm{V}_{\text {out }}=3.3 \mathrm{~V}$

Due to no Cspd, the stability is not good enough, and under-shoot amount is big during the load transient.
(2) $\mathrm{R} 1=3.75 \mathrm{k} \Omega, \mathrm{R} 2=1.2 \mathrm{k} \Omega, \mathrm{Cspd}=2200 \mathrm{pF}, \mathrm{V}_{\text {out }}=3.3 \mathrm{~V}$

(3)R1 $=3.75 \mathrm{k} \Omega, \mathrm{R} 2=1.2 \mathrm{k} \Omega, \mathrm{Cspd}=33000 \mathrm{pF}, \mathrm{V}_{\text {out }}=3.3 \mathrm{~V}$

Cspd value is too big, the response speed is fast, but the stability decreases slightly.

No. EA-269-200624

Rspd: Noise reduction filter for speed up capacitor

Cspd can improve the high frequency characteristics due to its differential function. In other words, the high frequency component is passed through without change, therefore the spike noise of Vout is transferred to FB pin as it is. If the spike noise is too big, by its noise of FB pin, the output voltage may be changed especially at heavy load. To avoid this situation, by setting an Rspd which inserts in series in Cspd and making a pole at high frequency, filtering is possible and effective. The appropriate value range of Rspd is from 10Ω to 30Ω. If the resistance value is too big, the effect of Cspd is cancelled by the lowering pole at high frequency by Rspd. By removing FB pin noise, using low R1 and R2 resistance value.

VOLTAGE BETWEEN Lx PIN AND BST PIN

In the boot-strap style switching regulator, when the Lx pin voltage becomes lower than the regulator which supplies BST voltage, $\mathrm{C}_{\text {BST }}$ is charged.

By this charge, while the Lx pin voltage is " H ", high side switch can be turned on continuously. Therefore, if Lx pin voltage does not become lower than the BST voltage supply regulator, switching may be abnormal. In the R1245, the output voltage of the BST voltage supply regulator is set at 5 V . The abnormal switching may be caused by the following conditions:

- $\mathrm{V}_{\text {out }}>5 \mathrm{~V}$, the difference between V_{in} and $\mathrm{V}_{\text {out }}$ is small, inductor current is discontinuous by light load

When the inductor current is continuous, or load current is big enough even if the discontinuous mode, the forward current of the diode will make Lx pin voltage down and $\mathrm{C}_{\text {bst }}$ is charged, but at light load, Lx pin voltage does not become low enough against the BST voltage supply regulator output(5V). The voltage of $\mathrm{C}_{\text {BSt }}$ is not high enough and drive capability will be down. (Figure 3-1) Due to the lack of the drive capability, Vout cannot be maintained, and under-shoot happens to Vout, Lx pin voltage may become lower than the BST voltage supply regulator output (5V), but the error amplifier operation may be abnormal. When the charge of $C_{B S T}$ is recovered and normal switching starts, Vout becomes back to set output voltage. However, after recovering the Vout, to recover the error amplifier's operation, some response time is necessary, during this response time, Vout may be over-shoot. (Figure 3-(2)) As a result, Lx pin voltage cannot be low enough against the BST voltage supply regulator output voltage (5V), undershoot and over-shoot may be repeated. (Figure 4)

No. EA-269-200624

Abnormal waveforms are shown in the next figures. Figure 3: Vin voltage start-up is slower than the softstart time Figure 4: The voltage difference between input and output is small and load current is small In both cases, the voltage between Lx pin and BST pin is not enough.

Figure 3. VIN slow start-up (R1245S003A: Vin $=30 \mathrm{~V}$, Vout $^{\text {I }}=24 \mathrm{~V}$, lout $=0 \mathrm{~mA}$)

Figure 4. The voltage difference between input and output is small (R1245S003A Vin $=5.5 \mathrm{~V}$, Vout $=5 \mathrm{~V}$, lout $=500 \mathrm{uA}$)

To avoid these situations, please refer to the countermeasures shown below:

- If start-up with Vout $>5 \mathrm{~V}$ is necessary, avoid the extremely low load, and start up should be done by CE pin control after Vin becomes high enough.
- If Vout $>5 \mathrm{~V}$ at low load operation is necessary, make the inductance value bigger and assure the "L" time of Lx.
- If start-up with $\mathrm{V}_{\text {IN }}=C E$ is necessary, avoid very slow $\mathrm{V}_{\text {IN }}$ setting and low load current condition.

During the output overshoot while the normal transient response, even the no-switching condition happens, the operation keeps normal. Other than that, low load condition with $\mathrm{V}_{\text {out }}<5 \mathrm{~V}$ is also normal condition for the device.

R1245x

No. EA-269-200624

MINIMUM ON TIME

The minimum On time of the R1245 is Typ.110ns. 110ns derives from the current sense circuit delay time and stability.

The R1245 has adopted current mode control without an external sense resistance. Instead of the external sense resistance, the on resistance of the N -channel driver: Ron is used. $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\llcorner x}=I_{\llcorner x} \times \mathrm{R}_{\mathrm{on}}$, therefore lıx (inductor current) can be sensed. Ilx can be sensed during the on time of the N -channel driver, ($L x=" H "$), if $L x$ switching surge is sensed just after turning on, the operation may be abnormal, therefore, just after turning on the N-channel driver, sensing is stopped for a short period and avoid the error by the switching surge.
Therefore, during this sensing delay time, current mode control and current limit cannot operate properly.
Figure 5. X-axis: On time, Y-axis: Current limit
By this current sense delay time, 110ns or less, current limit circuit has also delay time, and detecting current increases drastically. This delay time includes the signal delay time from the current sense circuit to the driver.

Figure 5. On time and Lx current limit, Lx pin current peak value Ilxıim
This could be applied to the current mode control. Therefore, 110 ns or less, current mode control does not work correctly, and operation becomes like a low stability voltage control mode.
Thus, the R1245 operation less than 110ns, stability and current limit detecting accuracy are deteriorated. If the condition is close to minimum on time, stability must be assured by external components, and over current protection other than the IC is necessary.

INPUT VOLTAGE TRANSIENT

In the R1245, if the voltage between input and output is small and max. duty condition, or if the input voltage changes from lower than the set output voltage to high voltage rapidly, depending on the setting frequency of the R1245, output voltage may be over-shoot to input voltage.

Figure 6: Output voltage is set at 5 V , and the input voltage is also set at 5 V . The figure shows the input voltage transient response of the input voltage from 5 V to 15 V rapidly. External voltages: General recommendation values on datasheet, load 20Ω resistance, or 250 mA load current.

In the high switching frequency type, the response speed is excellent, therefore, input transient characteristic is good, and over-shoot is suppressed. If input voltage rapid change must be considered, choose the high frequency type.

Figure 6. Input transient response from low difference voltage between input and output to high voltage

R1245x

No. EA-269-200624

If the difference between input and output is large, then over-shoot will not happen. In the Figure 7, Other than the start VIN, the conditions are same as Figure 6. VIN is changed from 8 V to $18 \mathrm{~V}, 330 \mathrm{kHz}$ type, input transient response. Frequency is the lowest, but there is no over-shoot.

Figure 7. Input transient response from the big difference between input and output
To improve the situation shown in Figure 6, as shown in Figure 8, by using a zener diode, ZD and resistance, when the VIN decreases, CE pin is set at "L" and make the IC standby, over-shoot will be suppressed. Because, when the VIN goes up again and IC becomes active, soft-start function will work. If the input voltage, VIN goes down, Before the set output voltage $\mathrm{V}_{\text {SET }}$ against VIN ratio, (VSET/VIN) becomes more than the max. duty, CE voltage must be "L". Consider this ratio and choose ZD voltage, or under the ZD, the voltage made by divider resisters must be forced to CE.

Figure 8. Low input voltage countermeasure circuit with using ZD

THE NOTE OF LAYOUT PATTERN

1. The wire of Power line ($\mathrm{V}_{\mathrm{IN}}, G N D$) should be broad to minimize the parasitic inductance. The Bypass capacitor $\left(\mathrm{C}_{\mathrm{IN}}\right)$ must be connected as close as possible in between V_{IN} - GND.
2. The wire between Lx pin and the inductor as short as possible to minimize the parasitic inductance.

This evaluation board is designed for the product evaluation board. Therefore large inductors or diodes can be set and the large space of Lx area has been secured. The evaluation board, R1245K003x (2400 kHz) with the reduced mounting area including external components, is available due to the small package of R1245K003G/H and the low recommended constant numbers including inductors.
3. The ripple current flows through the output capacitor. If the GND side of the output capacitor is connected very close to GND pin of the IC, the noise might have a bad impact on the IC. Therefore, the GND side of the output capacitor is better to connect to the outside of the GND of the $\mathrm{C}_{\mathfrak{I N}}$, or connect to the GND plain layer.
4. Rup, Rbot, Cspd, and Rspd should be mounted on the position as close as possible to the FB pin, and away from the inductor and BST pin.
5. The feed-back must be made as close as possible from the Output capacitor (Cout).

R1245x

No. EA-269-200624

PCB LAYOUT
R1245N001x

R1245S003x

R1245K003x (2400 kHz)

No. EA-269-200624

TYPICAL CHARACTERISTICS

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

1) FB voltage vs. Temperature

3) Oscillator frequency vs. Temperature

4) Driver On resistance vs. Temperature

R1245x00xx
(Vin=12V)

R1245x00xC/R1245x00xD
(V in $=12 \mathrm{~V}$)

R1245x00xG/R1245x00xH

4) Maximum duty cycle vs. Temperature

R1245x00xE/R1245x00xF
(V in $=12 \mathrm{~V}$)

R1245x00xC/R1245x00xD
$(\mathrm{V} \operatorname{IN}=12 \mathrm{~V})$

R1245x00xG/R1245x00xH
$\left(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}\right)$

R1245x

No. EA-269-200624

5) Fold back frequency vs. Temperature

7) UVLO detector threshold vs. Temperature

R1245x00xx

9) Soft-start time vs. Temperature

R1245x00xx
($\mathrm{V}_{\mathrm{in}}=12 \mathrm{~V}$)

11) $C E$ "H" Input voltage vs. Temperature

R1245x00xx
$\left(\mathrm{V}_{\mathbb{N}}=12 \mathrm{~V}\right)$

8) UVLO released voltage vs. Temperature

R1245x00xx

10) Timer latch delay vs. Temperature

R1245x00xx

$$
(\mathrm{V} \mathbb{N}=6 \mathrm{~V})
$$

12) $C E$ " L " Input voltage vs. Temperature R1245x00xx
$\left(\mathrm{V}_{\mathrm{in}}=12 \mathrm{~V}\right)$

R1245x

No. EA-269-200624
13) Soft-start waveform

R1245x00xA/R1245x00xB
Vоит $=3.3 \mathrm{~V}, \mathrm{~V}_{\text {ın }}=12 \mathrm{~V}$, Іочт $=0 \mathrm{~mA}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

14) Switching operation waveform

R1245x00xA/R1245x00xB
Vоит $=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{In}}=12 \mathrm{~V}$, Іоит $=0 \mathrm{~mA}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

(5V/div)

$\mathbf{2 \mu s} / \mathrm{div}$

R1245x00xG/R1245x00xH
VOUT=3.3V , VIN=12V , IOUT=20mA , $\mathrm{Ta}=25^{\circ} \mathrm{C}$

R1245x00xA/R1245x00xB
Vout $=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=12 \mathrm{~V}$, lout $=600 \mathrm{~mA}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

R1245x00xA/R1245x00xB
Vout $=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{In}}=12 \mathrm{~V}$, lout $=600 \mathrm{~mA}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

$2 \mu \mathrm{~s} / \mathrm{div}$
R1245x00xG/R1245x00xH
VOUT=3.3V , VIN=12V , IOUT=600mA , $\mathrm{Ta}=25^{\circ} \mathrm{C}$

15) Loaf transient response waveform R1245x00xA/R1245x00xB

$100 \mu s / d i v$

R1245x00xG/R1245x00xH

Vout $=1.5 \mathrm{~V}, \mathrm{~V}_{\text {In }}=4.5 \mathrm{~V}$, Іоит $=600 \Leftrightarrow 1200 \mathrm{~mA}, \mathrm{Ta}=25^{\circ} \mathrm{C}$
Vout
($100 \mathrm{mV} / \mathrm{div}$)

llout

($500 \mathrm{~mA} / \mathrm{di} \mathrm{v}$)

50us/div

R1245x00XA/R1245x00xB
Vоит $=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}$, Іочт $=600 \Leftrightarrow 1200 \mathrm{~mA}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

$100 \mu \mathrm{~s} / \mathrm{div}$

R1245x00xG/R1245x00xH
$V_{\text {out }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}$, lout $=600 \Leftrightarrow 1200 \mathrm{~mA}, \mathrm{Ta}=25^{\circ} \mathrm{C}$
Vout
($100 \mathrm{mV} / \mathrm{div}$)
llout
($500 \mathrm{~mA} / \mathrm{div}$)

50us/div

No. EA-269-200624
16) Limit latch operation waveform

R1245x00xA
Vоит $=3.3 \mathrm{~V}, \mathrm{~V}_{\text {In }}=12 \mathrm{~V}$, Rout $=5.5 \Omega \rightarrow 0.05 \Omega, \mathrm{Ta}=25^{\circ} \mathrm{C}$

18) Fold back operation waveform

R1245x00xB
Vоит $=3.3 \mathrm{~V}, \mathrm{~V}_{\text {In }}=12 \mathrm{~V}$, Rоит $=5.5 \Omega \rightarrow 0.05 \Omega$
$\mathrm{Ta}=25^{\circ} \mathrm{C}$

20) Switching waveform at fold back operation

17) Released waveform from limit latch R1245x00xA

$$
\text { Vоит }=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}, \text { Rout }=5.5 \Omega \rightarrow 0.05 \Omega \rightarrow 5.5 \Omega
$$

19) Released waveform from fold back

R1245x00xB
Vout $=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}$, R оит $=5.5 \Omega \rightarrow 0.05 \Omega \rightarrow 5.5 \Omega$
$\mathrm{Ta}=25^{\circ} \mathrm{C}$

21) Output current vs. Efficiency (Version A/B)

R1245x00xA/R1245x00xB
Vout=5.0V
($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

R1245x00xA/R1245x00xB
Vout=15V
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

R1245x00xA/R1245x00xB
Vout $=3.3 \mathrm{~V}$
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

R1245x00xA/R1245x00xB
Vout $=12 \mathrm{~V}$
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

R1245x00xA/R1245x00xB
Vout $=24 \mathrm{~V}$
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

R1245x

No. EA-269-200624
22) Output Current vs. Efficiency (Version C/D)

R1245x00xC/R1245x00xD
Vout=5.0V

R1245x00xC/R1245x00xD
Vout=15V
(Ta=25 ${ }^{\circ} \mathrm{C}$)

R1245x00xC/R1245x00xD
Vout $=3.3 \mathrm{~V}$
($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

R1245x00xC/R1245x00xD
Vоит=12V

R1245x00xC/R1245x00xD
Vout=24V
($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

23) Output current vs. Efficiency (Version E/F)

R1245x00xE/R1245x00xF
Vout $=5.0 \mathrm{~V}$

R1245x00xE/R1245x00xF
Vout=15V
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

R1245x00xE/R1245x00xF
Vout $=3.3 \mathrm{~V}$

R1245x00xE/R1245x00xF
Vout $=24 \mathrm{~V}$
($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

R1245x

No. EA-269-200624
24) Output current vs. Efficiency (Version G/H)

25) Output current vs Output voltage (Version A/B)

R1245x00xA/R1245x00xB
Vout=5.0V

R1245x00xA/R1245x00xB
Vout=15V

R1245x00xA/R1245x00xB
Vout $=3.3 \mathrm{~V}$
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

R1245x00xA/R1245x00xB
Vout $=12 \mathrm{~V}$

R1245x00xA/R1245x00xB
Vout $=24 \mathrm{~V}$
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

R1245x

No. EA-269-200624
26) Output current vs. Output voltage (Version C/D)

R1245x00xC/R1245x00xD
Vout=5.0V

R1245x00xC/R1245x00xD
Vout $=15 \mathrm{~V}$

R1245x00xC/R1245x00xD
V оит=3.3V
($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

R1245x00xC/R1245x00xD
Vout=12V

R1245x00xC/R1245x00xD
Vout $=24 \mathrm{~V}$
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

27) Output current vs. Output voltage (Version E/F)

R1245x

No. EA-269-200624
28) Output current vs. Output voltage (Version G/H)

R1245x00xG/R1245x00xH
Vout=5.0V

R1245x00xG/R1245x00xH

Vout $=3.3 \mathrm{~V}$
($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

R1245x00xG/R1245x00xH
Vout $=12 \mathrm{~V}$

29) Input voltage vs. Output voltage (Version A/B)

R1245x00xA/R1245x00xB
Vout=5.0V
($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

$4 \quad 6 \quad 8 \quad 1012141618202224262830$ Vin (V)

R1245x00xA/R1245x00xB
Vout=15V

R1245x00xA/R1245x00xB
Vout $=3.3 \mathrm{~V}$

R1245x00xA/R1245x00xB
Vout $=12 \mathrm{~V}$
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

R1245x00xA/R1245x00xB
Vout=24V
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

R1245x

No. EA-269-200624
30) Input voltage vs. Output voltage (Version C/D)

R1245x00xC/R1245x00xD
Vout $=5.0 \mathrm{~V}$

R1245x00xC/R1245x00xD
Vout=15V

R1245x00xC/R1245x00xD
Vout=3.3V
($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

R1245x00xC/R1245x00xD
Vout $=12 \mathrm{~V}$
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

R1245x00xC/R1245x00xD
Vout $=24 \mathrm{~V}$

31) Input voltage vs. Output voltage (Version E/F)

R1245x00xE/R1245x00xF

Vout $=5.0 \mathrm{~V}$

R1245x00xE/R1245x00xF
Vout $=15 \mathrm{~V}$

R1245x00xE/R1245x00xF
Vout $=3.3 \mathrm{~V}$

R1245x00xE/R1245x00xF
Vout $=12 \mathrm{~V}$

R1245x00xEIR1245x00xF
Vout $=24 \mathrm{~V}$

R1245x

No. EA-269-200624
32) Input voltage vs. Output voltage (Version G/H)

R1245x00xG/R1245x00xH
Vout $=5.0 \mathrm{~V}$

R1245x00xG/R1245x00xH

Vout $=3.3 \mathrm{~V}$

R1245x00xG/R1245x00xH
Vout $=12 \mathrm{~V}$

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

Measurement Conditions

	Ultra-High Wattage Land Pattern
Environment	Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	$76.2 \mathrm{~mm} \times 114.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$
Copper Ratio	Outer Layers (First and Fourth Layers): Approx. 95\% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100\% of 50 mm Square
Through-holes	$\phi 0.4 \mathrm{~mm} \times 21$ pcs

Measurement Result
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tjmax}=125^{\circ} \mathrm{C}\right)$

	Ultra-High Wattage Land Pattern
Power Dissipation	2.9 W
Thermal Resistance	$\theta \mathrm{ja}=\left(125-25^{\circ} \mathrm{C}\right) / 2.9 \mathrm{~W}=35^{\circ} \mathrm{C} / \mathrm{W}$
	$\theta \mathrm{jc}=10^{\circ} \mathrm{C} / \mathrm{W}$

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

HSOP-8E Package Dimensions

* The tab on the bottom of the package shown by blue circle is substrate potential (GND/VDD). It is recommended that this tab be connected to the ground plane/VDD pin on the board but it is possible to leave the tab floating.

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

Measurement Conditions

	Standard Test Land Pattern
Environment	Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$)
Board Material	Glass Cloth Epoxy Plastic (Double-Sided Board)
Board Dimensions	$40 \mathrm{~mm} \times 40 \mathrm{~mm} \times 1.6 \mathrm{~mm}$
Copper Ratio	Top Side: Approx. 50%
Bottom Side: Approx. 50%	
Through-holes	$\phi 0.54 \mathrm{~mm} \times 30 \mathrm{pcs}$

Measurement Result
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tjmax}=125^{\circ} \mathrm{C}\right)$

	Standard Test Land Pattern
Power Dissipation	880 mW
Thermal Resistance	$\theta \mathrm{ja}=\left(125-25^{\circ} \mathrm{C}\right) / 0.88 \mathrm{~W}=114^{\circ} \mathrm{C} / \mathrm{W}$

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

DFN (PLP) 2020-8 Package Dimensions (Unit: mm)

* The tab on the bottom of the package is substrate level (GND). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

Measurement Conditions

	Standard Test Land Pattern
Environment	Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$)
Board Material	Glass Cloth Epoxy Plastic (Double-Sided Board)
Board Dimensions	$40 \mathrm{~mm} \times 40 \mathrm{~mm} \times 1.6 \mathrm{~mm}$
Copper Ratio	Top Side: Approx. 50%
Bottom Side: Approx. 50%	
Through-holes	$\phi 0.5 \mathrm{~mm} \times 44 \mathrm{pcs}$

Measurement Result
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tjmax}=125^{\circ} \mathrm{C}\right)$

	Standard Test Land Pattern
Power Dissipation	430 mW
Thermal Resistance	$\theta \mathrm{ja}=\left(125-25^{\circ} \mathrm{C}\right) / 0.43 \mathrm{~W}=233^{\circ} \mathrm{C} / \mathrm{W}$

Power Dissipation vs. Ambient Temperature

IC Mount Area (mm)

Measurement Board Pattern

UNIT: mm

SOT-23-6W Package Dimensions (Unit: mm)

1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.
Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

Official website
https://www.n-redc.co.jp/en/
Contact us
https://www.n-redc.co.jp/en/buy/

